W = read.csv('data/wholesales.csv')
W$Channel = factor( paste0("Ch",W$Channel) )
W$Region = factor( paste0("Reg",W$Region) )
W[3:8] = lapply(W[3:8], log, base=10)
summary(W) Channel Region Fresh Milk Grocery
Ch1:298 Reg1: 77 Min. :0.477 Min. :1.74 Min. :0.477
Ch2:142 Reg2: 47 1st Qu.:3.495 1st Qu.:3.19 1st Qu.:3.333
Reg3:316 Median :3.930 Median :3.56 Median :3.677
Mean :3.792 Mean :3.53 Mean :3.666
3rd Qu.:4.229 3rd Qu.:3.86 3rd Qu.:4.028
Max. :5.050 Max. :4.87 Max. :4.968
Frozen Detergents_Paper Delicassen
Min. :1.40 Min. :0.477 Min. :0.477
1st Qu.:2.87 1st Qu.:2.409 1st Qu.:2.611
Median :3.18 Median :2.912 Median :2.985
Mean :3.17 Mean :2.947 Mean :2.895
3rd Qu.:3.55 3rd Qu.:3.594 3rd Qu.:3.260
Max. :4.78 Max. :4.611 Max. :4.681
💡 層級式集群分析的步驟:
■ scale() : 標準化
■ dist() : 距離矩陣
■ hclust() : 層級式集群分析
■ plot() : 畫出樹狀圖
■ rect.hclust() : 依據dandrogram做切割
■ cutree() : 產生分群向量
為了方便解釋,我們先使用兩個區隔變數做層級式集群分析
# 變數先選擇“生鮮“和”牛奶“
# scale標準化->個變數單位不同,會造成軸度不同,因此要先做標準化
# 標準化 mean = 0, std = 1 使變數權重相同
# dist距離矩陣,算出每點對每點的距離
# hclust層級式集群分析
hc = W[,3:4] %>% scale %>% dist %>% hclust樹狀圖的判讀與切割
產生分群向量
PCA() - Principle Component Analysisnames(W)[3:8] = c('生鮮','奶製品','雜貨','冷凍','清潔用品','熟食')
W[,3:8] %>% PCA() %>% fviz_pca_biplot(
col.ind=W$group, #
label="var", pointshape=19, mean.point=F,
addEllipses=T, ellipse.level=0.7,
ellipse.type = "convex", palette="ucscgb",
repel=T
)
💡 學習重點:
■ 集群分析的基本觀念
■ 距離矩陣:Distance Matrix
■ 層級式集群分析:Hierarchical Cluster Analysis
■ 樹狀圖(Dendrogram)的判讀
■ 依據樹狀圖決定要分多少群
■ 集群分析與尺度縮減的綜合應用
■ 現代化的資料視覺化工具套件