Part 1: Cluster anlaysis on house prices in Boston

Scale the data
library(maps)
library(cluster)
library(fpc)
library(fields)
boston = read.csv("boston6k.csv")
boston.use = boston[,-c(1:8)]
boston.use = scale(boston.use)
Run k-means cluster analysis
sil.out = rep(NA,20) 
for (i in 2:20) {
  boston.kmeans = kmeans(boston.use, centers=i, nstart=50)
  tmp = silhouette(boston.kmeans$cluster, dist(boston.use))
  sil.out[i] = mean(tmp[,3])
}
Plot indexes
plot(1:20,sil.out, type='b', lwd=2,
     xlab="N Groups", ylab="C", main="Average silhouette index")

Based on the plot results, it seems that 2 clusters is the best solution followed by the next best cluster as 11. 2 clusters though isn’t a sufficient amount of data reduction and 11 has higher computation costs, so I will use 6 since it’s the next best cluster in the silhouette index.

Re-run k(means)
ngrp = 6
boston.kmeans = kmeans(boston.use, ngrp, nstart=50, iter.max = 20)
table(boston.kmeans$cluster)
## 
##   1   2   3   4   5   6 
##  38  91  34 173 109  61
Use the aggregate function
b6k.centers <- aggregate(boston.use, list(boston.kmeans$cluster ),median)
b6k.centers
##   Group.1       CRIM         ZN      INDUS       CHAS         NOX          RM
## 1       1  1.0778501 -0.4872402  1.0149946 -0.2723291  1.07272553 -0.12401404
## 2       2  0.4912834 -0.4872402  1.0149946 -0.2723291  1.19354259 -0.28982269
## 3       3 -0.3638042 -0.4872402  0.4013236  3.6647712 -0.04051738 -0.07633515
## 4       4 -0.4077644 -0.4872402 -0.7691701 -0.2723291 -0.71364099  0.05887362
## 5       5 -0.3817574 -0.4872402 -0.1642450 -0.2723291  0.15796779 -0.46061271
## 6       6 -0.4159350  2.7285450 -1.1933466 -0.2723291 -1.24005818  0.64667596
##          AGE        DIS        RAD        TAX    PTRATIO          B      LSTAT
## 1  0.8659355 -0.8881292  1.6596029  1.5294129  0.8057784 -3.4056574  1.0190273
## 2  0.9742880 -0.8756394  1.6596029  1.5294129  0.8057784  0.3731422  0.7193520
## 3  0.7096237 -0.3924532 -0.5224844 -0.6006817 -0.3951756  0.3713897 -0.2328874
## 4 -0.5106743  0.3539696 -0.5224844 -0.7371501 -0.2104134  0.4053456 -0.6291870
## 5  0.8250813 -0.6520568 -0.6373311 -0.1022751  0.3438730  0.3754425  0.2712393
## 6 -1.4449928  1.6679681 -0.6373311 -0.4701466 -0.9494620  0.3954874 -1.0450916
  • Clusters close to 1 indicates the observation is correct
  • Close to - indicates observation is on the border between clusters
  • Close to -1 indicates observation is incorrect cluster.

Overall there seems to be homogeneity between clusters.The positive values in the table above indicate for a given cluster it is above the overall mean. Cluster 2 has the highest positive proportion of residential land zoned (ZN) as well as weighted distances to five Boston employment centers (DIS) where other clusters are negative. Cluster 1 has the highest positive crime rate.

boston.agg = aggregate(boston, list(boston.kmeans$cluster), mean)
## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA
boston.agg
##   Group.1        ID TOWN   TOWNNO     TRACT       LON      LAT     MEDV
## 1       1  70.81579   NA 81.89474  799.5789 -71.08169 42.32164 12.51053
## 2       2  73.54945   NA 82.04396  815.0659 -71.07597 42.32936 16.51648
## 3       3 281.47059   NA 46.52941 2875.9412 -71.17256 42.34603 27.80588
## 4       4 328.01156   NA 32.60694 3424.2428 -71.09563 42.38061 26.25434
## 5       5 263.87156   NA 32.74312 3069.7064 -71.05453 42.40161 19.52569
## 6       6 390.31148   NA 43.95082 3886.0820 -71.15354 42.30682 29.63115
##      CMEDV        CRIM         ZN     INDUS       CHAS       NOX       RM
## 1 12.48421 20.27734737  0.0000000 18.100000 0.00000000 0.6683158 6.074789
## 2 16.47692  9.54108637  0.0000000 18.629670 0.00000000 0.6668132 5.924374
## 3 27.80588  1.90568971  5.2941176 13.057647 1.00000000 0.5990853 6.478324
## 4 26.25145  0.19343769  8.6878613  6.185549 0.00000000 0.4829925 6.491832
## 5 19.59083  0.81043807  0.1146789 14.226789 0.00000000 0.5986055 5.997064
## 6 29.56557  0.05031049 66.4672131  3.070984 0.01639344 0.4168049 6.771066
##        AGE      DIS       RAD      TAX  PTRATIO         B     LSTAT
## 1 90.30789 1.948447 24.000000 666.0000 20.20000  80.52026 21.127105
## 2 89.73956 2.116189 22.901099 668.4725 20.19451 371.70582 18.436593
## 3 79.05000 2.945729  9.558824 391.7941 17.60588 372.33500 11.479412
## 4 53.55780 4.732037  4.676301 281.8439 17.77399 390.37636  8.599422
## 5 86.75413 2.703088  4.366972 357.6972 18.77156 364.39991 15.509450
## 6 27.72951 7.217108  3.704918 317.3770 16.61639 388.16344  5.792787
Mean corrected house value
boston.agg[,8]
## [1] 12.51053 16.51648 27.80588 26.25434 19.52569 29.63115
Test if values are significantly different between clusters with ANOVA
bos.lm = lm(boston$CMEDV ~ boston.kmeans$cluster)
bos.lm
## 
## Call:
## lm(formula = boston$CMEDV ~ boston.kmeans$cluster)
## 
## Coefficients:
##           (Intercept)  boston.kmeans$cluster  
##                13.297                  2.427
anova(bos.lm)
## Analysis of Variance Table
## 
## Response: boston$CMEDV
##                        Df Sum Sq Mean Sq F value    Pr(>F)    
## boston.kmeans$cluster   1   6322  6322.4   87.89 < 2.2e-16 ***
## Residuals             504  36255    71.9                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Values between clusters are significantly different based on the p-value of 0.04154.

Part 2:Spatial distribution of climatic variables

Summary of data
climate = read.csv("wnaclim2.csv")
climate2 = climate[3:26]
clim.pca = prcomp(climate2, scale=TRUE)
summary(clim.pca)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     3.4612 2.8065 1.5846 0.84733 0.63986 0.51316 0.29261
## Proportion of Variance 0.4992 0.3282 0.1046 0.02992 0.01706 0.01097 0.00357
## Cumulative Proportion  0.4992 0.8274 0.9320 0.96190 0.97896 0.98993 0.99350
##                            PC8     PC9    PC10    PC11    PC12    PC13    PC14
## Standard deviation     0.20707 0.17437 0.15014 0.13534 0.10798 0.09353 0.08322
## Proportion of Variance 0.00179 0.00127 0.00094 0.00076 0.00049 0.00036 0.00029
## Cumulative Proportion  0.99528 0.99655 0.99749 0.99825 0.99874 0.99910 0.99939
##                           PC15    PC16    PC17    PC18    PC19    PC20    PC21
## Standard deviation     0.06116 0.05676 0.04584 0.04161 0.03439 0.02946 0.02562
## Proportion of Variance 0.00016 0.00013 0.00009 0.00007 0.00005 0.00004 0.00003
## Cumulative Proportion  0.99955 0.99968 0.99977 0.99984 0.99989 0.99993 0.99995
##                           PC22    PC23    PC24
## Standard deviation     0.02411 0.01802 0.01392
## Proportion of Variance 0.00002 0.00001 0.00001
## Cumulative Proportion  0.99998 0.99999 1.00000
Make a scree plot
screeplot(clim.pca)

Make a biplot
biplot(clim.pca)

Variance
summary(clim.pca)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     3.4612 2.8065 1.5846 0.84733 0.63986 0.51316 0.29261
## Proportion of Variance 0.4992 0.3282 0.1046 0.02992 0.01706 0.01097 0.00357
## Cumulative Proportion  0.4992 0.8274 0.9320 0.96190 0.97896 0.98993 0.99350
##                            PC8     PC9    PC10    PC11    PC12    PC13    PC14
## Standard deviation     0.20707 0.17437 0.15014 0.13534 0.10798 0.09353 0.08322
## Proportion of Variance 0.00179 0.00127 0.00094 0.00076 0.00049 0.00036 0.00029
## Cumulative Proportion  0.99528 0.99655 0.99749 0.99825 0.99874 0.99910 0.99939
##                           PC15    PC16    PC17    PC18    PC19    PC20    PC21
## Standard deviation     0.06116 0.05676 0.04584 0.04161 0.03439 0.02946 0.02562
## Proportion of Variance 0.00016 0.00013 0.00009 0.00007 0.00005 0.00004 0.00003
## Cumulative Proportion  0.99955 0.99968 0.99977 0.99984 0.99989 0.99993 0.99995
##                           PC22    PC23    PC24
## Standard deviation     0.02411 0.01802 0.01392
## Proportion of Variance 0.00002 0.00001 0.00001
## Cumulative Proportion  0.99998 0.99999 1.00000
Examine loadings
clim.pca$rotation
##             PC1         PC2          PC3           PC4         PC5
## tjan 0.27154635 -0.07007925  0.080386417 -0.1634473814  0.29901716
## tfeb 0.27524689 -0.07830351  0.051384208 -0.0792929685  0.26587174
## tmar 0.27484658 -0.09367701 -0.001067899  0.0006366441  0.19086484
## tapr 0.26473010 -0.12257641 -0.076298000  0.1052955242  0.03981628
## tmay 0.23877755 -0.16889072 -0.127271902  0.1251598792 -0.21848109
## tjun 0.20220435 -0.21701738 -0.139841033  0.0811805985 -0.44268300
## tjul 0.20390908 -0.22851811 -0.090041235  0.0981226254 -0.35337585
## taug 0.22863878 -0.20271341 -0.057726655  0.1081761983 -0.22777782
## tsep 0.25186014 -0.16881584 -0.031188367 -0.0252319485 -0.11100418
## toct 0.26714245 -0.12423680 -0.014213457  0.0039586317  0.12864795
## tnov 0.27214789 -0.09552584  0.029032040 -0.0776651476  0.26276447
## tdec 0.27301687 -0.07380880  0.068758839 -0.1472904833  0.28523902
## pjan 0.16803736  0.25995212  0.198293078 -0.0491302786 -0.14878411
## pfeb 0.17102216  0.26393484  0.174815508 -0.0779200398 -0.13546314
## pmar 0.17796187  0.25650454  0.169544577 -0.0684787805 -0.08941670
## papr 0.17074339  0.27824680  0.066073520  0.0873621609 -0.01709438
## pmay 0.14748106  0.25905950 -0.096201569  0.4454588155  0.21475276
## pjun 0.05730680  0.23790590 -0.271290553  0.6551603362  0.14238968
## pjul 0.01369406  0.10097126 -0.573535723 -0.1391139500  0.07054361
## paug 0.03206302  0.14782502 -0.519764989 -0.4064516753  0.01206271
## psep 0.10354548  0.26528778 -0.300542026 -0.1481576621 -0.04780745
## poct 0.13939969  0.28759576 -0.081905529 -0.1479311802 -0.16441200
## pnov 0.16303542  0.27829605  0.141217106 -0.0566592085 -0.16857230
## pdec 0.16860662  0.26639834  0.170927455 -0.0622112513 -0.15532094
##                PC6          PC7          PC8         PC9         PC10
## tjan -0.0284108206  0.006685677  0.150748941 -0.03370819  0.295282973
## tfeb  0.0003503783  0.136618117  0.096325727  0.05374427  0.146770345
## tmar  0.0472553831  0.299836795  0.107879864  0.12796171 -0.002868388
## tapr  0.1142053327  0.361840941  0.005051047  0.18027931 -0.245606706
## tmay  0.1162681105  0.391610249  0.152998679  0.14131428 -0.153895952
## tjun  0.0336846593  0.059413350  0.153361302  0.08729649  0.185251391
## tjul -0.0968873526 -0.282122219  0.078633470 -0.02281332  0.111072241
## taug -0.1100855056 -0.269202717 -0.078353138 -0.16060487  0.002348289
## tsep -0.0494334800 -0.197844681 -0.135371606 -0.17154105  0.019210005
## toct -0.0108001461 -0.228312237 -0.393469988 -0.13609013 -0.315583081
## tnov -0.0341735253 -0.123895015 -0.174524477 -0.10198795 -0.168381612
## tdec -0.0376637342 -0.070659399  0.019616400 -0.04699441  0.196876851
## pjan  0.2458067285  0.032089376 -0.048645619 -0.21338581  0.001100698
## pfeb  0.1820140769 -0.040185881 -0.011301000  0.07554311 -0.126403221
## pmar  0.2288319443 -0.177170757  0.160725487  0.13544683 -0.309717304
## papr -0.0925172437 -0.305189314  0.271689204  0.39781282 -0.204745692
## pmay -0.1948655497 -0.258064679  0.241986147  0.13372542  0.183453709
## pjun  0.1213474134  0.141181422 -0.086059500 -0.36227611  0.043038183
## pjul  0.4811346946 -0.176731790 -0.383344278  0.38567024  0.178533100
## paug  0.0604580646 -0.072069255  0.509760728 -0.38851386 -0.032443473
## psep -0.4843787725  0.196824537 -0.149665107 -0.09624515 -0.407497122
## poct -0.4759093700  0.159625862 -0.266370371  0.26037169  0.346421923
## pnov  0.0644439203  0.128788161 -0.117454901 -0.17604085  0.237115136
## pdec  0.1871590345  0.094644125 -0.105030745 -0.21895144  0.170211499
##               PC11         PC12         PC13          PC14        PC15
## tjan -0.3177818979  0.084717452 -0.198073796  0.0306128664 -0.12524773
## tfeb -0.0850920746  0.207170982  0.215049963 -0.0248132032  0.07177408
## tmar  0.0837891432  0.151198192  0.338194830 -0.1213396869 -0.04343164
## tapr  0.2429592526 -0.018873516  0.244346289  0.0007484506  0.04381860
## tmay  0.0431667637 -0.232783794 -0.291244671  0.0480458427 -0.18616504
## tjun -0.0987876247 -0.033840012 -0.422444222 -0.0105642695  0.31526141
## tjul -0.0486904501  0.283065952  0.298939526 -0.0044454340  0.14450174
## taug -0.0152404625  0.136111286  0.291708371 -0.0496293283 -0.21486141
## tsep -0.0444107836 -0.120942065 -0.094460420  0.0209592856 -0.41993874
## toct  0.2093561076 -0.231921667 -0.011130377  0.0997939913  0.27607606
## tnov  0.1006998972 -0.233238733 -0.174605090 -0.0378639293  0.02149880
## tdec -0.1909224250  0.002929791 -0.196357064  0.0633928569  0.15143733
## pjan -0.0005762763  0.039714713  0.006401917 -0.3431345819  0.49814932
## pfeb -0.1595286785  0.149113176  0.045518203  0.2980140260  0.07726715
## pmar -0.0295711250  0.194223506 -0.064458463  0.5326818242 -0.13153712
## papr -0.3048488853 -0.403344025  0.133363364 -0.4467304855 -0.08102153
## pmay  0.5520813847  0.203821338 -0.246609418  0.0048849326  0.02882245
## pjun -0.4115111702 -0.123357939  0.112057802  0.1724675213  0.02767334
## pjul -0.0309151580  0.137303662 -0.039627958 -0.1174288399 -0.07339510
## paug  0.1609697226 -0.224188960  0.158706743  0.0989438683  0.06477934
## psep -0.1703085895  0.441341096 -0.234474281 -0.2164132305 -0.05426607
## poct  0.0248821147 -0.304950065  0.205141127  0.3425036906  0.16345751
## pnov  0.1821268769 -0.095799139  0.015392954 -0.1184016248 -0.41165840
## pdec  0.1898709898  0.053178843 -0.055907092 -0.2039300913 -0.10002376
##              PC16         PC17         PC18          PC19          PC20
## tjan  0.148674822 -0.107041343  0.160823567 -0.0269825468  0.4272858093
## tfeb -0.017002651  0.234367308 -0.030332072  0.0627361960  0.0203446585
## tmar -0.035352024 -0.000212998 -0.023742455 -0.0452842790 -0.2687836322
## tapr  0.022030975  0.145866305  0.006613803 -0.0184863673 -0.0467386911
## tmay  0.142255714 -0.298105316  0.126282045  0.0006562435  0.3387549738
## tjun -0.160935797  0.249990410 -0.191135211  0.0289864553 -0.2723565962
## tjul -0.238251861 -0.162051895 -0.033972474  0.1319965479  0.2737881475
## taug  0.106065552 -0.250950490  0.035001101 -0.1434759326 -0.0549829727
## tsep  0.390707549  0.327566676  0.244781447 -0.0916673160 -0.3538791803
## toct  0.018144251  0.349455508 -0.075056635  0.0788151267  0.4142142645
## tnov -0.264971834 -0.588989556 -0.143864858  0.0332551632 -0.3245451022
## tdec -0.157870134  0.092966911 -0.097722453  0.0092514596 -0.1416159968
## pjan  0.206879187 -0.141990574  0.530872235  0.0890666735 -0.0947536147
## pfeb  0.530999363 -0.151466383 -0.533289719  0.2207678709 -0.0675137256
## pmar -0.380592388  0.074655676  0.335006369 -0.1362476881 -0.0616168429
## papr -0.056901612  0.106755938 -0.084786785 -0.0375141498  0.0485745440
## pmay  0.177758906 -0.022014450  0.025024070  0.0376327473 -0.0093294644
## pjun -0.094904165  0.013377094 -0.016298342 -0.0261197497 -0.0346808089
## pjul -0.005543386 -0.049203713  0.044870954  0.0112968029  0.0096717843
## paug  0.047348123  0.015708070 -0.052098593  0.0046396787  0.0009636633
## psep -0.040657537  0.041970363 -0.011347466  0.0246969815  0.0132694536
## poct  0.027120678 -0.090538295  0.148875670 -0.1375823255 -0.0299283689
## pnov -0.283906262  0.105283956 -0.052183791  0.6219718414  0.0532889852
## pdec -0.122022282  0.048156966 -0.325075890 -0.6730608587  0.1687923951
##              PC21         PC22         PC23          PC24
## tjan  0.110569448 -0.174362955  0.466461484  0.1410538810
## tfeb  0.411083337  0.195963582 -0.553989382  0.3303973610
## tmar  0.190517645 -0.117562888  0.219088103 -0.6511559490
## tapr -0.404433770 -0.108135234  0.270516403  0.5155541679
## tmay -0.037106821  0.143632598 -0.348991274 -0.1986853412
## tjun  0.254278010  0.063546212  0.239743583  0.0692545700
## tjul -0.179763796 -0.459394939 -0.200353045 -0.0523957985
## taug  0.026308260  0.644090923  0.223105697  0.0795298706
## tsep -0.041652632 -0.338752088 -0.179241161 -0.0007117746
## toct  0.159245830  0.068434255  0.090617300 -0.2078886850
## tnov  0.183602516 -0.198760485 -0.051768256  0.1951652783
## tdec -0.671182075  0.274168418 -0.167825018 -0.2131251230
## pjan -0.025665936  0.023245016 -0.023533194 -0.0018978335
## pfeb -0.017169890 -0.043847725  0.001437087 -0.0140109546
## pmar  0.073977731  0.042827913  0.030519916 -0.0138651710
## papr -0.008348023  0.008701196 -0.001837501  0.0129567032
## pmay -0.007890496  0.009175983 -0.014398707 -0.0095682867
## pjun  0.019589810 -0.050004246 -0.001155038 -0.0001735104
## pjul -0.003853114  0.023997896 -0.014147625 -0.0044508995
## paug  0.004197034  0.012388955  0.011866533  0.0056221737
## psep -0.017989679 -0.007676584 -0.001546521 -0.0008137329
## poct  0.026887105 -0.009846198 -0.006560772  0.0004372792
## pnov -0.015092274  0.074152159  0.081791929  0.0084156928
## pdec -0.018484850 -0.087548286 -0.071983057  0.0171497426
sort(clim.pca$rotation[,1])
##       pjul       paug       pjun       psep       poct       pmay       pnov 
## 0.01369406 0.03206302 0.05730680 0.10354548 0.13939969 0.14748106 0.16303542 
##       pjan       pdec       papr       pfeb       pmar       tjun       tjul 
## 0.16803736 0.16860662 0.17074339 0.17102216 0.17796187 0.20220435 0.20390908 
##       taug       tmay       tsep       tapr       toct       tjan       tnov 
## 0.22863878 0.23877755 0.25186014 0.26473010 0.26714245 0.27154635 0.27214789 
##       tdec       tmar       tfeb 
## 0.27301687 0.27484658 0.27524689
sort(clim.pca$rotation[,2])
##        tjul        tjun        taug        tmay        tsep        toct 
## -0.22851811 -0.21701738 -0.20271341 -0.16889072 -0.16881584 -0.12423680 
##        tapr        tnov        tmar        tfeb        tdec        tjan 
## -0.12257641 -0.09552584 -0.09367701 -0.07830351 -0.07380880 -0.07007925 
##        pjul        paug        pjun        pmar        pmay        pjan 
##  0.10097126  0.14782502  0.23790590  0.25650454  0.25905950  0.25995212 
##        pfeb        psep        pdec        papr        pnov        poct 
##  0.26393484  0.26528778  0.26639834  0.27824680  0.27829605  0.28759576

Variables highly associated with axis are tfeb = 0.2752 tmar = 0.2748. Variables highly associated with axis 2 are poct = 0.28759 pnov = 0.27824680

Axis 1 site scores
clim.pca.score = clim.pca$x[,1]
quilt.plot(climate$Longitude, climate$Latitude, clim.pca.score)
##  [1] 0.00000000 0.01587302 0.03174603 0.04761905 0.06349206 0.07936508
##  [7] 0.09523810 0.11111111 0.12698413 0.14285714 0.15873016 0.17460317
## [13] 0.19047619 0.20634921 0.22222222 0.23809524 0.25396825 0.26984127
## [19] 0.28571429 0.30158730 0.31746032 0.33333333 0.34920635 0.36507937
## [25] 0.38095238 0.39682540 0.41269841 0.42857143 0.44444444 0.46031746
## [31] 0.47619048 0.49206349 0.50793651 0.52380952 0.53968254 0.55555556
## [37] 0.57142857 0.58730159 0.60317460 0.61904762 0.63492063 0.65079365
## [43] 0.66666667 0.68253968 0.69841270 0.71428571 0.73015873 0.74603175
## [49] 0.76190476 0.77777778 0.79365079 0.80952381 0.82539683 0.84126984
## [55] 0.85714286 0.87301587 0.88888889 0.90476190 0.92063492 0.93650794
## [61] 0.95238095 0.96825397 0.98412698 1.00000000
##  [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##  [8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [22] 0.0000000 0.0000000 0.0000000 0.0627451 0.1254902 0.1882353 0.2509804
## [29] 0.3137255 0.3764706 0.4392157 0.5019608 0.5607843 0.6235294 0.6862745
## [36] 0.7490196 0.8117647 0.8745098 0.9372549 1.0000000 1.0000000 1.0000000
## [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [57] 0.9372549 0.8745098 0.8117647 0.7490196 0.6862745 0.6235294 0.5607843
## [64] 0.5019608
##  [1] 0.00000000 0.01587302 0.03174603 0.04761905 0.06349206 0.07936508
##  [7] 0.09523810 0.11111111 0.12698413 0.14285714 0.15873016 0.17460317
## [13] 0.19047619 0.20634921 0.22222222 0.23809524 0.25396825 0.26984127
## [19] 0.28571429 0.30158730 0.31746032 0.33333333 0.34920635 0.36507937
## [25] 0.38095238 0.39682540 0.41269841 0.42857143 0.44444444 0.46031746
## [31] 0.47619048 0.49206349 0.50793651 0.52380952 0.53968254 0.55555556
## [37] 0.57142857 0.58730159 0.60317460 0.61904762 0.63492063 0.65079365
## [43] 0.66666667 0.68253968 0.69841270 0.71428571 0.73015873 0.74603175
## [49] 0.76190476 0.77777778 0.79365079 0.80952381 0.82539683 0.84126984
## [55] 0.85714286 0.87301587 0.88888889 0.90476190 0.92063492 0.93650794
## [61] 0.95238095 0.96825397 0.98412698 1.00000000
##  [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##  [8] 0.0000000 0.0627451 0.1254902 0.1882353 0.2509804 0.3137255 0.3764706
## [15] 0.4392157 0.5019608 0.5607843 0.6235294 0.6862745 0.7490196 0.8117647
## [22] 0.8745098 0.9372549 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9372549 0.8745098
## [43] 0.8117647 0.7490196 0.6862745 0.6235294 0.5607843 0.5019608 0.4392157
## [50] 0.3764706 0.3137255 0.2509804 0.1882353 0.1254902 0.0627451 0.0000000
## [57] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [64] 0.0000000
##  [1] 0.00000000 0.01587302 0.03174603 0.04761905 0.06349206 0.07936508
##  [7] 0.09523810 0.11111111 0.12698413 0.14285714 0.15873016 0.17460317
## [13] 0.19047619 0.20634921 0.22222222 0.23809524 0.25396825 0.26984127
## [19] 0.28571429 0.30158730 0.31746032 0.33333333 0.34920635 0.36507937
## [25] 0.38095238 0.39682540 0.41269841 0.42857143 0.44444444 0.46031746
## [31] 0.47619048 0.49206349 0.50793651 0.52380952 0.53968254 0.55555556
## [37] 0.57142857 0.58730159 0.60317460 0.61904762 0.63492063 0.65079365
## [43] 0.66666667 0.68253968 0.69841270 0.71428571 0.73015873 0.74603175
## [49] 0.76190476 0.77777778 0.79365079 0.80952381 0.82539683 0.84126984
## [55] 0.85714286 0.87301587 0.88888889 0.90476190 0.92063492 0.93650794
## [61] 0.95238095 0.96825397 0.98412698 1.00000000
##  [1] 0.5607843 0.6235294 0.6862745 0.7490196 0.8117647 0.8745098 0.9372549
##  [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [22] 1.0000000 1.0000000 1.0000000 0.9372549 0.8745098 0.8117647 0.7490196
## [29] 0.6862745 0.6235294 0.5607843 0.5019608 0.4392157 0.3764706 0.3137255
## [36] 0.2509804 0.1882353 0.1254902 0.0627451 0.0000000 0.0000000 0.0000000
## [43] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [50] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [57] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [64] 0.0000000
world(add=TRUE)

Axis 1 variation in temperature site scores generally makes sense and follows predicted weather groupings in North America. In the Pacific Northwest and Southwest desert there are positive values. This makes sense because there is less temperature variation throughout the year. In Alaska and Northern Canada, there are negative values where temperature variation is higher because of its range of high and low elevations.Categorizing the Southern desert areas with British Columbia coast though doesn’t quite make sense.

Axis 2 site scores
clim.pca.score = clim.pca$x[,2]
quilt.plot(climate$Longitude, climate$Latitude, clim.pca.score)
##  [1] 0.00000000 0.01587302 0.03174603 0.04761905 0.06349206 0.07936508
##  [7] 0.09523810 0.11111111 0.12698413 0.14285714 0.15873016 0.17460317
## [13] 0.19047619 0.20634921 0.22222222 0.23809524 0.25396825 0.26984127
## [19] 0.28571429 0.30158730 0.31746032 0.33333333 0.34920635 0.36507937
## [25] 0.38095238 0.39682540 0.41269841 0.42857143 0.44444444 0.46031746
## [31] 0.47619048 0.49206349 0.50793651 0.52380952 0.53968254 0.55555556
## [37] 0.57142857 0.58730159 0.60317460 0.61904762 0.63492063 0.65079365
## [43] 0.66666667 0.68253968 0.69841270 0.71428571 0.73015873 0.74603175
## [49] 0.76190476 0.77777778 0.79365079 0.80952381 0.82539683 0.84126984
## [55] 0.85714286 0.87301587 0.88888889 0.90476190 0.92063492 0.93650794
## [61] 0.95238095 0.96825397 0.98412698 1.00000000
##  [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##  [8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [22] 0.0000000 0.0000000 0.0000000 0.0627451 0.1254902 0.1882353 0.2509804
## [29] 0.3137255 0.3764706 0.4392157 0.5019608 0.5607843 0.6235294 0.6862745
## [36] 0.7490196 0.8117647 0.8745098 0.9372549 1.0000000 1.0000000 1.0000000
## [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [57] 0.9372549 0.8745098 0.8117647 0.7490196 0.6862745 0.6235294 0.5607843
## [64] 0.5019608
##  [1] 0.00000000 0.01587302 0.03174603 0.04761905 0.06349206 0.07936508
##  [7] 0.09523810 0.11111111 0.12698413 0.14285714 0.15873016 0.17460317
## [13] 0.19047619 0.20634921 0.22222222 0.23809524 0.25396825 0.26984127
## [19] 0.28571429 0.30158730 0.31746032 0.33333333 0.34920635 0.36507937
## [25] 0.38095238 0.39682540 0.41269841 0.42857143 0.44444444 0.46031746
## [31] 0.47619048 0.49206349 0.50793651 0.52380952 0.53968254 0.55555556
## [37] 0.57142857 0.58730159 0.60317460 0.61904762 0.63492063 0.65079365
## [43] 0.66666667 0.68253968 0.69841270 0.71428571 0.73015873 0.74603175
## [49] 0.76190476 0.77777778 0.79365079 0.80952381 0.82539683 0.84126984
## [55] 0.85714286 0.87301587 0.88888889 0.90476190 0.92063492 0.93650794
## [61] 0.95238095 0.96825397 0.98412698 1.00000000
##  [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##  [8] 0.0000000 0.0627451 0.1254902 0.1882353 0.2509804 0.3137255 0.3764706
## [15] 0.4392157 0.5019608 0.5607843 0.6235294 0.6862745 0.7490196 0.8117647
## [22] 0.8745098 0.9372549 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9372549 0.8745098
## [43] 0.8117647 0.7490196 0.6862745 0.6235294 0.5607843 0.5019608 0.4392157
## [50] 0.3764706 0.3137255 0.2509804 0.1882353 0.1254902 0.0627451 0.0000000
## [57] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [64] 0.0000000
##  [1] 0.00000000 0.01587302 0.03174603 0.04761905 0.06349206 0.07936508
##  [7] 0.09523810 0.11111111 0.12698413 0.14285714 0.15873016 0.17460317
## [13] 0.19047619 0.20634921 0.22222222 0.23809524 0.25396825 0.26984127
## [19] 0.28571429 0.30158730 0.31746032 0.33333333 0.34920635 0.36507937
## [25] 0.38095238 0.39682540 0.41269841 0.42857143 0.44444444 0.46031746
## [31] 0.47619048 0.49206349 0.50793651 0.52380952 0.53968254 0.55555556
## [37] 0.57142857 0.58730159 0.60317460 0.61904762 0.63492063 0.65079365
## [43] 0.66666667 0.68253968 0.69841270 0.71428571 0.73015873 0.74603175
## [49] 0.76190476 0.77777778 0.79365079 0.80952381 0.82539683 0.84126984
## [55] 0.85714286 0.87301587 0.88888889 0.90476190 0.92063492 0.93650794
## [61] 0.95238095 0.96825397 0.98412698 1.00000000
##  [1] 0.5607843 0.6235294 0.6862745 0.7490196 0.8117647 0.8745098 0.9372549
##  [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [22] 1.0000000 1.0000000 1.0000000 0.9372549 0.8745098 0.8117647 0.7490196
## [29] 0.6862745 0.6235294 0.5607843 0.5019608 0.4392157 0.3764706 0.3137255
## [36] 0.2509804 0.1882353 0.1254902 0.0627451 0.0000000 0.0000000 0.0000000
## [43] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [50] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [57] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [64] 0.0000000
world(add=TRUE)

Axis 2 sites scores shows participation patterns across North America. Along the pacific north west coast, there is generally high precipitation that varies minimally throughout the year.