Leitura e Análise exploratória de dados

LISTANDO DIRETÓRIO DE TRABALHO

Para listar o diretório de trabalho atual basta digitar no console:

getwd()

MUDANDO O DIRETÓRIO

Caso seja necessário mudar o diretório de trabalho para outra pasta de sua preferência, use:

No R studio:

LEITURA DE DADOS

Arquivo Dados_soja.csv:

dados_soja = read.csv("Dados_soja.csv", header = T, sep= " ")

Lendo arquivos online:

soja = read.table("https://raw.githubusercontent.com/leocbc/CursoR_iniciante/master/Arquivos/Modulo_2/soja.txt", header = T)

feijao = read.table("https://raw.githubusercontent.com/leocbc/CursoR_iniciante/master/Arquivos/Modulo_2/feijao.txt", header = T)

SUMARIZANDO OS DADOS

head(feijao)
##   REP TRAT NDIF TP VC ACAM ST  P5V COMPV NGV PG5V  PROD
## 1   1   21   45  2  3    4 52 23.3 108.0  67 15.2 442.7
## 2   2   21   46  1  4    2 47 18.4  97.0  85 13.8 183.7
## 3   3   21   41  1  3    2 57 24.6 102.0  70 15.7 540.1
## 4   4   21   45  2  4    2 66 11.0  78.0  50  9.4 513.8
## 5   1   22   46  2  3    2 35 22.3  99.2  68 16.4 253.7
## 6   2   22   45  2  3    4 52 17.5  81.0  62 13.0  97.9
str(feijao)
## 'data.frame':    80 obs. of  12 variables:
##  $ REP  : int  1 2 3 4 1 2 3 4 1 2 ...
##  $ TRAT : int  21 21 21 21 22 22 22 22 23 23 ...
##  $ NDIF : int  45 46 41 45 46 45 45 45 45 46 ...
##  $ TP   : int  2 1 1 2 2 2 2 3 1 1 ...
##  $ VC   : int  3 4 3 4 3 3 3 2 4 4 ...
##  $ ACAM : int  4 2 2 2 2 4 4 3 2 2 ...
##  $ ST   : int  52 47 57 66 35 52 52 54 54 49 ...
##  $ P5V  : num  23.3 18.4 24.6 11 22.3 17.5 23.3 19.8 20.2 20.8 ...
##  $ COMPV: num  108 97 102 78 99.2 81 108 106 98.9 99 ...
##  $ NGV  : int  67 85 70 50 68 62 67 62 78 66 ...
##  $ PG5V : num  15.2 13.8 15.7 9.4 16.4 13 15.2 15 15.5 15.4 ...
##  $ PROD : num  443 184 540 514 254 ...
summary(feijao)
##       REP            TRAT            NDIF             TP              VC       
##  Min.   :1.00   Min.   :21.00   Min.   :37.00   Min.   :1.000   Min.   :2.000  
##  1st Qu.:1.75   1st Qu.:25.75   1st Qu.:40.00   1st Qu.:1.000   1st Qu.:3.000  
##  Median :2.50   Median :30.50   Median :40.00   Median :1.000   Median :3.000  
##  Mean   :2.50   Mean   :30.50   Mean   :41.08   Mean   :1.562   Mean   :3.025  
##  3rd Qu.:3.25   3rd Qu.:35.25   3rd Qu.:42.25   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :4.00   Max.   :40.00   Max.   :47.00   Max.   :3.000   Max.   :4.000  
##       ACAM             ST             P5V            COMPV       
##  Min.   :1.000   Min.   :20.00   Min.   :11.00   Min.   :  1.00  
##  1st Qu.:2.000   1st Qu.:37.25   1st Qu.:15.62   1st Qu.: 88.00  
##  Median :3.000   Median :48.50   Median :16.90   Median : 96.00  
##  Mean   :2.812   Mean   :46.67   Mean   :17.36   Mean   : 92.14  
##  3rd Qu.:3.000   3rd Qu.:57.00   3rd Qu.:19.02   3rd Qu.:100.00  
##  Max.   :5.000   Max.   :76.00   Max.   :24.60   Max.   :112.00  
##       NGV             PG5V             PROD       
##  Min.   :41.00   Min.   :  8.90   Min.   :  89.9  
##  1st Qu.:58.00   1st Qu.: 12.07   1st Qu.: 374.7  
##  Median :63.50   Median : 13.20   Median : 473.5  
##  Mean   :63.25   Mean   : 15.85   Mean   : 489.1  
##  3rd Qu.:68.00   3rd Qu.: 14.70   3rd Qu.: 616.8  
##  Max.   :85.00   Max.   :131.00   Max.   :1016.2

MOLDANDO E EXPLORANDO OS DADOS: FUNÇÕES VARIADAS

filter(feijao, PROD > 489.1 & TRAT ==21)
##   REP TRAT NDIF TP VC ACAM ST  P5V COMPV NGV PG5V  PROD
## 1   3   21   41  1  3    2 57 24.6   102  70 15.7 540.1
## 2   4   21   45  2  4    2 66 11.0    78  50  9.4 513.8
select(feijao, starts_with("P"))
##     P5V  PG5V   PROD
## 1  23.3  15.2  442.7
## 2  18.4  13.8  183.7
## 3  24.6  15.7  540.1
## 4  11.0   9.4  513.8
## 5  22.3  16.4  253.7
## 6  17.5  13.0   97.9
## 7  23.3  15.2  442.7
## 8  19.8  15.0  165.3
## 9  20.2  15.5  528.6
## 10 20.8  15.4   90.3
## 11 22.7  14.7  240.7
## 12 19.0  13.7  376.6
## 13 22.5  13.7  270.1
## 14 16.9  13.3  400.4
## 15 16.9  13.7  439.8
## 16 20.3  16.6  209.2
## 17 16.9  12.6  259.6
## 18 19.0  14.0  364.1
## 19 17.6  12.9  408.0
## 20 16.2  12.1  521.4
## 21 19.7  14.0   89.9
## 22 16.0  11.0  422.0
## 23 16.9  12.4  550.7
## 24 16.3  11.8  454.9
## 25 14.2   9.3  510.5
## 26 15.2  12.1  716.3
## 27 19.7  16.4 1016.2
## 28 18.8  13.0  529.8
## 29 21.2  15.9  412.1
## 30 14.0  11.5  723.9
## 31 15.8  12.6  605.8
## 32 16.1  12.4  560.7
## 33 17.6  13.0  586.7
## 34 15.4  11.6  657.1
## 35 16.4  12.8  330.5
## 36 16.4  11.5  463.0
## 37 18.3  13.1  268.1
## 38 19.1  13.9  561.4
## 39 19.6  15.4  672.6
## 40 15.9  14.4  606.2
## 41 14.4  11.8  562.1
## 42 11.4   8.9  785.9
## 43 14.1  11.3  663.9
## 44 16.4  15.2  785.0
## 45 15.9  12.1  470.0
## 46 22.0  16.7  369.1
## 47 16.4  13.2  656.3
## 48 16.9  13.7  688.2
## 49 13.6  11.2  622.6
## 50 16.6  13.6  392.0
## 51 16.2  13.4  728.4
## 52 17.7  13.0  389.1
## 53 14.9  11.2  378.5
## 54 14.6  11.2  614.8
## 55 19.0  15.2  951.4
## 56 15.0  12.9  917.0
## 57 17.1  13.2  363.4
## 58 14.9  11.0  579.7
## 59 15.9  12.5  707.2
## 60 20.4  16.1  550.2
## 61 18.3  14.2  443.1
## 62 16.9  13.3  400.4
## 63 15.7  11.7  392.2
## 64 17.3  13.2  223.9
## 65 20.0  14.7  269.1
## 66 19.9  15.0  477.0
## 67 20.2  15.2  579.1
## 68 17.8  13.8  486.6
## 69 13.9  10.0  231.3
## 70 12.8  10.2  724.0
## 71 14.8  10.4  434.1
## 72 15.1  12.4  380.8
## 73 14.5  12.0  437.7
## 74 14.0  11.3  261.3
## 75 17.1  12.2  168.3
## 76 14.8  12.3  541.9
## 77 18.0  14.1  879.0
## 78 18.3  14.6  700.0
## 79 16.4 109.0  789.6
## 80 18.0 131.0  646.4
arrange(feijao, desc(PROD))
##    REP TRAT NDIF TP VC ACAM ST  P5V  COMPV NGV  PG5V   PROD
## 1    3   27   40  2  3    3 56 19.7 109.00  72  16.4 1016.2
## 2    3   34   38  1  4    2 55 19.0 103.00  74  15.2  951.4
## 3    4   34   40  1  3    2 41 15.0  88.00  61  12.9  917.0
## 4    1   40   41  1  3    2 47 18.0  98.00  69  14.1  879.0
## 5    3   40   38  1  3    4 33 16.4   1.00  55 109.0  789.6
## 6    2   31   40  1  3    2 56 11.4  75.00  56   8.9  785.9
## 7    4   31   40  1  3    4 69 16.4 100.00  64  15.2  785.0
## 8    3   33   40  1  3    2 69 16.2  94.00  69  13.4  728.4
## 9    2   38   40  2  3    4 50 12.8  72.00  52  10.2  724.0
## 10   2   28   40  2  3    3 32 14.0  92.00  67  11.5  723.9
## 11   2   27   40  1  4    2 28 15.2  97.00  68  12.1  716.3
## 12   3   35   40  1  3    3 48 15.9  99.00  72  12.5  707.2
## 13   2   40   40  1  3    3 47 18.3  99.00  68  14.6  700.0
## 14   4   32   40  1  3    4 69 16.9 103.00  68  13.7  688.2
## 15   3   30   40  2  3    3 50 19.6 111.00  68  15.4  672.6
## 16   3   31   40  1  3    2 52 14.1  89.00  63  11.3  663.9
## 17   2   29   40  1  2    3 49 15.4  95.00  61  11.6  657.1
## 18   3   32   40  1  3    3 43 16.4  94.00  55  13.2  656.3
## 19   4   40   40  1  3    3 51 18.0   1.01  56 131.0  646.4
## 20   1   33   41  1  4    1 46 13.6  82.00  59  11.2  622.6
## 21   2   34   40  1  3    2 52 14.6  96.00  56  11.2  614.8
## 22   4   30   40  3  2    4 60 15.9  92.00  60  14.4  606.2
## 23   3   28   40  1  3    3 26 15.8  96.00  63  12.6  605.8
## 24   1   29   40  2  3    3 45 17.6  96.00  64  13.0  586.7
## 25   2   35   40  2  3    3 43 14.9  99.00  65  11.0  579.7
## 26   3   37   40  3  3    5 31 20.2 111.00  67  15.2  579.1
## 27   1   31   41  1  4    1 25 14.4  86.00  63  11.8  562.1
## 28   2   30   38  3  3    4 43 19.1 101.00  69  13.9  561.4
## 29   4   28   40  2  3    3 61 16.1 102.00  56  12.4  560.7
## 30   3   26   40  2  3    3 54 16.9 103.00  63  12.4  550.7
## 31   4   35   40  1  3    2 57 20.4 103.00  80  16.1  550.2
## 32   4   39   40  1  3    2 43 14.8  69.00  48  12.3  541.9
## 33   3   21   41  1  3    2 57 24.6 102.00  70  15.7  540.1
## 34   4   27   40  1  3    4 68 18.8  96.00  54  13.0  529.8
## 35   1   23   45  1  4    2 54 20.2  98.90  78  15.5  528.6
## 36   4   25   40  1  4    2 60 16.2  91.00  75  12.1  521.4
## 37   4   21   45  2  4    2 66 11.0  78.00  50   9.4  513.8
## 38   1   27   40  3  3    4 38 14.2  88.00  58   9.3  510.5
## 39   4   37   42  3  3    3 56 17.8  99.00  57  13.8  486.6
## 40   2   37   38  3  2    4 20 19.9 106.00  64  15.0  477.0
## 41   1   32   40  1  2    3 20 15.9  91.00  62  12.1  470.0
## 42   4   29   40  2  2    4 62 16.4  94.00  58  11.5  463.0
## 43   4   26   40  2  3    3 50 16.3  98.00  58  11.8  454.9
## 44   1   36   37  1  3    2 22 18.3 100.00  66  14.2  443.1
## 45   1   21   45  2  3    4 52 23.3 108.00  67  15.2  442.7
## 46   3   22   45  2  3    4 52 23.3 108.00  67  15.2  442.7
## 47   3   24   45  1  3    2 65 16.9  90.00  62  13.7  439.8
## 48   1   39   40  1  3    2 30 14.5  79.00  53  12.0  437.7
## 49   3   38   40  1  4    2 76 14.8  89.00  50  10.4  434.1
## 50   2   26   40  2  3    3 38 16.0  98.00  52  11.0  422.0
## 51   1   28   37  1  3    2 28 21.2 103.00  71  15.9  412.1
## 52   3   25   40  1  4    2 62 17.6  93.00  67  12.9  408.0
## 53   2   24   43  1  3    4 57 16.9  92.00  67  13.3  400.4
## 54   2   36   38  1  4    3 57 16.9  92.00  67  13.3  400.4
## 55   3   36   40  1  2    3 44 15.7  96.00  50  11.7  392.2
## 56   2   33   40  1  3    2 21 16.6  96.00  70  13.6  392.0
## 57   4   33   43  1  4    2 57 17.7  81.00  62  13.0  389.1
## 58   4   38   42  1  3    2 65 15.1  81.00  59  12.4  380.8
## 59   1   34   40  1  2    2 26 14.9  89.00  59  11.2  378.5
## 60   4   23   47  1  3    3 57 19.0  86.00  57  13.7  376.6
## 61   2   32   38  1  3    3 34 22.0 112.00  74  16.7  369.1
## 62   2   25   38  1  4    2 39 19.0  86.00  68  14.0  364.1
## 63   1   35   41  1  3    2 42 17.1 100.00  72  13.2  363.4
## 64   3   29   40  3  2    4 32 16.4  92.00  58  12.8  330.5
## 65   1   24   46  3  4    4 43 22.5  92.00  71  13.7  270.1
## 66   1   37   44  2  2    3 30 20.0 106.00  66  14.7  269.1
## 67   1   30   40  3  2    4 27 18.3  98.00  71  13.1  268.1
## 68   2   39   38  1  2    2 27 14.0  80.00  41  11.3  261.3
## 69   1   25   43  3  3    3 47 16.9  84.00  66  12.6  259.6
## 70   1   22   46  2  3    2 35 22.3  99.20  68  16.4  253.7
## 71   3   23   45  2  3    3 49 22.7  99.00  63  14.7  240.7
## 72   1   38   45  2  3    3 40 13.9  83.00  52  10.0  231.3
## 73   4   36   40  2  2    4 60 17.3  97.00  61  13.2  223.9
## 74   4   24   46  2  3    3 67 20.3  85.00  69  16.6  209.2
## 75   2   21   46  1  4    2 47 18.4  97.00  85  13.8  183.7
## 76   3   39   40  1  3    2 39 17.1  88.00  50  12.2  168.3
## 77   4   22   45  3  2    3 54 19.8 106.00  62  15.0  165.3
## 78   2   22   45  2  3    4 52 17.5  81.00  62  13.0   97.9
## 79   2   23   46  1  4    2 49 20.8  99.00  66  15.4   90.3
## 80   1   26   44  3  3    3 30 19.7 108.00  74  14.0   89.9
feijao %>% arrange(desc(PROD)) %>% select(TRAT)
##    TRAT
## 1    27
## 2    34
## 3    34
## 4    40
## 5    40
## 6    31
## 7    31
## 8    33
## 9    38
## 10   28
## 11   27
## 12   35
## 13   40
## 14   32
## 15   30
## 16   31
## 17   29
## 18   32
## 19   40
## 20   33
## 21   34
## 22   30
## 23   28
## 24   29
## 25   35
## 26   37
## 27   31
## 28   30
## 29   28
## 30   26
## 31   35
## 32   39
## 33   21
## 34   27
## 35   23
## 36   25
## 37   21
## 38   27
## 39   37
## 40   37
## 41   32
## 42   29
## 43   26
## 44   36
## 45   21
## 46   22
## 47   24
## 48   39
## 49   38
## 50   26
## 51   28
## 52   25
## 53   24
## 54   36
## 55   36
## 56   33
## 57   33
## 58   38
## 59   34
## 60   23
## 61   32
## 62   25
## 63   35
## 64   29
## 65   24
## 66   37
## 67   30
## 68   39
## 69   25
## 70   22
## 71   23
## 72   38
## 73   36
## 74   24
## 75   21
## 76   39
## 77   22
## 78   22
## 79   23
## 80   26
feijao %>% arrange(desc(PROD)) %>% select(TRAT)
##    TRAT
## 1    27
## 2    34
## 3    34
## 4    40
## 5    40
## 6    31
## 7    31
## 8    33
## 9    38
## 10   28
## 11   27
## 12   35
## 13   40
## 14   32
## 15   30
## 16   31
## 17   29
## 18   32
## 19   40
## 20   33
## 21   34
## 22   30
## 23   28
## 24   29
## 25   35
## 26   37
## 27   31
## 28   30
## 29   28
## 30   26
## 31   35
## 32   39
## 33   21
## 34   27
## 35   23
## 36   25
## 37   21
## 38   27
## 39   37
## 40   37
## 41   32
## 42   29
## 43   26
## 44   36
## 45   21
## 46   22
## 47   24
## 48   39
## 49   38
## 50   26
## 51   28
## 52   25
## 53   24
## 54   36
## 55   36
## 56   33
## 57   33
## 58   38
## 59   34
## 60   23
## 61   32
## 62   25
## 63   35
## 64   29
## 65   24
## 66   37
## 67   30
## 68   39
## 69   25
## 70   22
## 71   23
## 72   38
## 73   36
## 74   24
## 75   21
## 76   39
## 77   22
## 78   22
## 79   23
## 80   26

Classificando a variável PROD

mutate(feijao, PROD = log(PROD))
##    REP TRAT NDIF TP VC ACAM ST  P5V  COMPV NGV  PG5V     PROD
## 1    1   21   45  2  3    4 52 23.3 108.00  67  15.2 6.092892
## 2    2   21   46  1  4    2 47 18.4  97.00  85  13.8 5.213304
## 3    3   21   41  1  3    2 57 24.6 102.00  70  15.7 6.291754
## 4    4   21   45  2  4    2 66 11.0  78.00  50   9.4 6.241834
## 5    1   22   46  2  3    2 35 22.3  99.20  68  16.4 5.536152
## 6    2   22   45  2  3    4 52 17.5  81.00  62  13.0 4.583947
## 7    3   22   45  2  3    4 52 23.3 108.00  67  15.2 6.092892
## 8    4   22   45  3  2    3 54 19.8 106.00  62  15.0 5.107762
## 9    1   23   45  1  4    2 54 20.2  98.90  78  15.5 6.270232
## 10   2   23   46  1  4    2 49 20.8  99.00  66  15.4 4.503137
## 11   3   23   45  2  3    3 49 22.7  99.00  63  14.7 5.483551
## 12   4   23   47  1  3    3 57 19.0  86.00  57  13.7 5.931184
## 13   1   24   46  3  4    4 43 22.5  92.00  71  13.7 5.598792
## 14   2   24   43  1  3    4 57 16.9  92.00  67  13.3 5.992464
## 15   3   24   45  1  3    2 65 16.9  90.00  62  13.7 6.086320
## 16   4   24   46  2  3    3 67 20.3  85.00  69  16.6 5.343291
## 17   1   25   43  3  3    3 47 16.9  84.00  66  12.6 5.559142
## 18   2   25   38  1  4    2 39 19.0  86.00  68  14.0 5.897429
## 19   3   25   40  1  4    2 62 17.6  93.00  67  12.9 6.011267
## 20   4   25   40  1  4    2 60 16.2  91.00  75  12.1 6.256518
## 21   1   26   44  3  3    3 30 19.7 108.00  74  14.0 4.498698
## 22   2   26   40  2  3    3 38 16.0  98.00  52  11.0 6.045005
## 23   3   26   40  2  3    3 54 16.9 103.00  63  12.4 6.311190
## 24   4   26   40  2  3    3 50 16.3  98.00  58  11.8 6.120078
## 25   1   27   40  3  3    4 38 14.2  88.00  58   9.3 6.235391
## 26   2   27   40  1  4    2 28 15.2  97.00  68  12.1 6.574099
## 27   3   27   40  2  3    3 56 19.7 109.00  72  16.4 6.923825
## 28   4   27   40  1  3    4 68 18.8  96.00  54  13.0 6.272500
## 29   1   28   37  1  3    2 28 21.2 103.00  71  15.9 6.021266
## 30   2   28   40  2  3    3 32 14.0  92.00  67  11.5 6.584653
## 31   3   28   40  1  3    3 26 15.8  96.00  63  12.6 6.406550
## 32   4   28   40  2  3    3 61 16.1 102.00  56  12.4 6.329186
## 33   1   29   40  2  3    3 45 17.6  96.00  64  13.0 6.374514
## 34   2   29   40  1  2    3 49 15.4  95.00  61  11.6 6.487836
## 35   3   29   40  3  2    4 32 16.4  92.00  58  12.8 5.800607
## 36   4   29   40  2  2    4 62 16.4  94.00  58  11.5 6.137727
## 37   1   30   40  3  2    4 27 18.3  98.00  71  13.1 5.591360
## 38   2   30   38  3  3    4 43 19.1 101.00  69  13.9 6.330434
## 39   3   30   40  2  3    3 50 19.6 111.00  68  15.4 6.511151
## 40   4   30   40  3  2    4 60 15.9  92.00  60  14.4 6.407210
## 41   1   31   41  1  4    1 25 14.4  86.00  63  11.8 6.331680
## 42   2   31   40  1  3    2 56 11.4  75.00  56   8.9 6.666830
## 43   3   31   40  1  3    2 52 14.1  89.00  63  11.3 6.498132
## 44   4   31   40  1  3    4 69 16.4 100.00  64  15.2 6.665684
## 45   1   32   40  1  2    3 20 15.9  91.00  62  12.1 6.152733
## 46   2   32   38  1  3    3 34 22.0 112.00  74  16.7 5.911068
## 47   3   32   40  1  3    3 43 16.4  94.00  55  13.2 6.486618
## 48   4   32   40  1  3    4 69 16.9 103.00  68  13.7 6.534079
## 49   1   33   41  1  4    1 46 13.6  82.00  59  11.2 6.433904
## 50   2   33   40  1  3    2 21 16.6  96.00  70  13.6 5.971262
## 51   3   33   40  1  3    2 69 16.2  94.00  69  13.4 6.590850
## 52   4   33   43  1  4    2 57 17.7  81.00  62  13.0 5.963836
## 53   1   34   40  1  2    2 26 14.9  89.00  59  11.2 5.936216
## 54   2   34   40  1  3    2 52 14.6  96.00  56  11.2 6.421297
## 55   3   34   38  1  4    2 55 19.0 103.00  74  15.2 6.857935
## 56   4   34   40  1  3    2 41 15.0  88.00  61  12.9 6.821107
## 57   1   35   41  1  3    2 42 17.1 100.00  72  13.2 5.895504
## 58   2   35   40  2  3    3 43 14.9  99.00  65  11.0 6.362511
## 59   3   35   40  1  3    3 48 15.9  99.00  72  12.5 6.561314
## 60   4   35   40  1  3    2 57 20.4 103.00  80  16.1 6.310282
## 61   1   36   37  1  3    2 22 18.3 100.00  66  14.2 6.093795
## 62   2   36   38  1  4    3 57 16.9  92.00  67  13.3 5.992464
## 63   3   36   40  1  2    3 44 15.7  96.00  50  11.7 5.971772
## 64   4   36   40  2  2    4 60 17.3  97.00  61  13.2 5.411200
## 65   1   37   44  2  2    3 30 20.0 106.00  66  14.7 5.595083
## 66   2   37   38  3  2    4 20 19.9 106.00  64  15.0 6.167516
## 67   3   37   40  3  3    5 31 20.2 111.00  67  15.2 6.361475
## 68   4   37   42  3  3    3 56 17.8  99.00  57  13.8 6.187442
## 69   1   38   45  2  3    3 40 13.9  83.00  52  10.0 5.443716
## 70   2   38   40  2  3    4 50 12.8  72.00  52  10.2 6.584791
## 71   3   38   40  1  4    2 76 14.8  89.00  50  10.4 6.073275
## 72   4   38   42  1  3    2 65 15.1  81.00  59  12.4 5.942274
## 73   1   39   40  1  3    2 30 14.5  79.00  53  12.0 6.081534
## 74   2   39   38  1  2    2 27 14.0  80.00  41  11.3 5.565669
## 75   3   39   40  1  3    2 39 17.1  88.00  50  12.2 5.125748
## 76   4   39   40  1  3    2 43 14.8  69.00  48  12.3 6.295081
## 77   1   40   41  1  3    2 47 18.0  98.00  69  14.1 6.778785
## 78   2   40   40  1  3    3 47 18.3  99.00  68  14.6 6.551080
## 79   3   40   38  1  3    4 33 16.4   1.00  55 109.0 6.671526
## 80   4   40   40  1  3    3 51 18.0   1.01  56 131.0 6.471419
feijao %>% 
    mutate(
      classe = ifelse(PROD > 489.1, "Produtiva", "Não Produtiva")
    ) %>% 
select(TRAT, classe)
##    TRAT        classe
## 1    21 Não Produtiva
## 2    21 Não Produtiva
## 3    21     Produtiva
## 4    21     Produtiva
## 5    22 Não Produtiva
## 6    22 Não Produtiva
## 7    22 Não Produtiva
## 8    22 Não Produtiva
## 9    23     Produtiva
## 10   23 Não Produtiva
## 11   23 Não Produtiva
## 12   23 Não Produtiva
## 13   24 Não Produtiva
## 14   24 Não Produtiva
## 15   24 Não Produtiva
## 16   24 Não Produtiva
## 17   25 Não Produtiva
## 18   25 Não Produtiva
## 19   25 Não Produtiva
## 20   25     Produtiva
## 21   26 Não Produtiva
## 22   26 Não Produtiva
## 23   26     Produtiva
## 24   26 Não Produtiva
## 25   27     Produtiva
## 26   27     Produtiva
## 27   27     Produtiva
## 28   27     Produtiva
## 29   28 Não Produtiva
## 30   28     Produtiva
## 31   28     Produtiva
## 32   28     Produtiva
## 33   29     Produtiva
## 34   29     Produtiva
## 35   29 Não Produtiva
## 36   29 Não Produtiva
## 37   30 Não Produtiva
## 38   30     Produtiva
## 39   30     Produtiva
## 40   30     Produtiva
## 41   31     Produtiva
## 42   31     Produtiva
## 43   31     Produtiva
## 44   31     Produtiva
## 45   32 Não Produtiva
## 46   32 Não Produtiva
## 47   32     Produtiva
## 48   32     Produtiva
## 49   33     Produtiva
## 50   33 Não Produtiva
## 51   33     Produtiva
## 52   33 Não Produtiva
## 53   34 Não Produtiva
## 54   34     Produtiva
## 55   34     Produtiva
## 56   34     Produtiva
## 57   35 Não Produtiva
## 58   35     Produtiva
## 59   35     Produtiva
## 60   35     Produtiva
## 61   36 Não Produtiva
## 62   36 Não Produtiva
## 63   36 Não Produtiva
## 64   36 Não Produtiva
## 65   37 Não Produtiva
## 66   37 Não Produtiva
## 67   37     Produtiva
## 68   37 Não Produtiva
## 69   38 Não Produtiva
## 70   38     Produtiva
## 71   38 Não Produtiva
## 72   38 Não Produtiva
## 73   39 Não Produtiva
## 74   39 Não Produtiva
## 75   39 Não Produtiva
## 76   39     Produtiva
## 77   40     Produtiva
## 78   40     Produtiva
## 79   40     Produtiva
## 80   40     Produtiva
library(tidyr)
feijao_2 = feijao %>% unite(col = trat_rep,
                 TRAT,REP,
                 sep = "_")
feijao_2
##    trat_rep NDIF TP VC ACAM ST  P5V  COMPV NGV  PG5V   PROD
## 1      21_1   45  2  3    4 52 23.3 108.00  67  15.2  442.7
## 2      21_2   46  1  4    2 47 18.4  97.00  85  13.8  183.7
## 3      21_3   41  1  3    2 57 24.6 102.00  70  15.7  540.1
## 4      21_4   45  2  4    2 66 11.0  78.00  50   9.4  513.8
## 5      22_1   46  2  3    2 35 22.3  99.20  68  16.4  253.7
## 6      22_2   45  2  3    4 52 17.5  81.00  62  13.0   97.9
## 7      22_3   45  2  3    4 52 23.3 108.00  67  15.2  442.7
## 8      22_4   45  3  2    3 54 19.8 106.00  62  15.0  165.3
## 9      23_1   45  1  4    2 54 20.2  98.90  78  15.5  528.6
## 10     23_2   46  1  4    2 49 20.8  99.00  66  15.4   90.3
## 11     23_3   45  2  3    3 49 22.7  99.00  63  14.7  240.7
## 12     23_4   47  1  3    3 57 19.0  86.00  57  13.7  376.6
## 13     24_1   46  3  4    4 43 22.5  92.00  71  13.7  270.1
## 14     24_2   43  1  3    4 57 16.9  92.00  67  13.3  400.4
## 15     24_3   45  1  3    2 65 16.9  90.00  62  13.7  439.8
## 16     24_4   46  2  3    3 67 20.3  85.00  69  16.6  209.2
## 17     25_1   43  3  3    3 47 16.9  84.00  66  12.6  259.6
## 18     25_2   38  1  4    2 39 19.0  86.00  68  14.0  364.1
## 19     25_3   40  1  4    2 62 17.6  93.00  67  12.9  408.0
## 20     25_4   40  1  4    2 60 16.2  91.00  75  12.1  521.4
## 21     26_1   44  3  3    3 30 19.7 108.00  74  14.0   89.9
## 22     26_2   40  2  3    3 38 16.0  98.00  52  11.0  422.0
## 23     26_3   40  2  3    3 54 16.9 103.00  63  12.4  550.7
## 24     26_4   40  2  3    3 50 16.3  98.00  58  11.8  454.9
## 25     27_1   40  3  3    4 38 14.2  88.00  58   9.3  510.5
## 26     27_2   40  1  4    2 28 15.2  97.00  68  12.1  716.3
## 27     27_3   40  2  3    3 56 19.7 109.00  72  16.4 1016.2
## 28     27_4   40  1  3    4 68 18.8  96.00  54  13.0  529.8
## 29     28_1   37  1  3    2 28 21.2 103.00  71  15.9  412.1
## 30     28_2   40  2  3    3 32 14.0  92.00  67  11.5  723.9
## 31     28_3   40  1  3    3 26 15.8  96.00  63  12.6  605.8
## 32     28_4   40  2  3    3 61 16.1 102.00  56  12.4  560.7
## 33     29_1   40  2  3    3 45 17.6  96.00  64  13.0  586.7
## 34     29_2   40  1  2    3 49 15.4  95.00  61  11.6  657.1
## 35     29_3   40  3  2    4 32 16.4  92.00  58  12.8  330.5
## 36     29_4   40  2  2    4 62 16.4  94.00  58  11.5  463.0
## 37     30_1   40  3  2    4 27 18.3  98.00  71  13.1  268.1
## 38     30_2   38  3  3    4 43 19.1 101.00  69  13.9  561.4
## 39     30_3   40  2  3    3 50 19.6 111.00  68  15.4  672.6
## 40     30_4   40  3  2    4 60 15.9  92.00  60  14.4  606.2
## 41     31_1   41  1  4    1 25 14.4  86.00  63  11.8  562.1
## 42     31_2   40  1  3    2 56 11.4  75.00  56   8.9  785.9
## 43     31_3   40  1  3    2 52 14.1  89.00  63  11.3  663.9
## 44     31_4   40  1  3    4 69 16.4 100.00  64  15.2  785.0
## 45     32_1   40  1  2    3 20 15.9  91.00  62  12.1  470.0
## 46     32_2   38  1  3    3 34 22.0 112.00  74  16.7  369.1
## 47     32_3   40  1  3    3 43 16.4  94.00  55  13.2  656.3
## 48     32_4   40  1  3    4 69 16.9 103.00  68  13.7  688.2
## 49     33_1   41  1  4    1 46 13.6  82.00  59  11.2  622.6
## 50     33_2   40  1  3    2 21 16.6  96.00  70  13.6  392.0
## 51     33_3   40  1  3    2 69 16.2  94.00  69  13.4  728.4
## 52     33_4   43  1  4    2 57 17.7  81.00  62  13.0  389.1
## 53     34_1   40  1  2    2 26 14.9  89.00  59  11.2  378.5
## 54     34_2   40  1  3    2 52 14.6  96.00  56  11.2  614.8
## 55     34_3   38  1  4    2 55 19.0 103.00  74  15.2  951.4
## 56     34_4   40  1  3    2 41 15.0  88.00  61  12.9  917.0
## 57     35_1   41  1  3    2 42 17.1 100.00  72  13.2  363.4
## 58     35_2   40  2  3    3 43 14.9  99.00  65  11.0  579.7
## 59     35_3   40  1  3    3 48 15.9  99.00  72  12.5  707.2
## 60     35_4   40  1  3    2 57 20.4 103.00  80  16.1  550.2
## 61     36_1   37  1  3    2 22 18.3 100.00  66  14.2  443.1
## 62     36_2   38  1  4    3 57 16.9  92.00  67  13.3  400.4
## 63     36_3   40  1  2    3 44 15.7  96.00  50  11.7  392.2
## 64     36_4   40  2  2    4 60 17.3  97.00  61  13.2  223.9
## 65     37_1   44  2  2    3 30 20.0 106.00  66  14.7  269.1
## 66     37_2   38  3  2    4 20 19.9 106.00  64  15.0  477.0
## 67     37_3   40  3  3    5 31 20.2 111.00  67  15.2  579.1
## 68     37_4   42  3  3    3 56 17.8  99.00  57  13.8  486.6
## 69     38_1   45  2  3    3 40 13.9  83.00  52  10.0  231.3
## 70     38_2   40  2  3    4 50 12.8  72.00  52  10.2  724.0
## 71     38_3   40  1  4    2 76 14.8  89.00  50  10.4  434.1
## 72     38_4   42  1  3    2 65 15.1  81.00  59  12.4  380.8
## 73     39_1   40  1  3    2 30 14.5  79.00  53  12.0  437.7
## 74     39_2   38  1  2    2 27 14.0  80.00  41  11.3  261.3
## 75     39_3   40  1  3    2 39 17.1  88.00  50  12.2  168.3
## 76     39_4   40  1  3    2 43 14.8  69.00  48  12.3  541.9
## 77     40_1   41  1  3    2 47 18.0  98.00  69  14.1  879.0
## 78     40_2   40  1  3    3 47 18.3  99.00  68  14.6  700.0
## 79     40_3   38  1  3    4 33 16.4   1.00  55 109.0  789.6
## 80     40_4   40  1  3    3 51 18.0   1.01  56 131.0  646.4
feijao_2 %>% separate(col = trat_rep,
                    into = c("TRAT","REP"),
                    sep = "_",
                    extra = "drop")
##    TRAT REP NDIF TP VC ACAM ST  P5V  COMPV NGV  PG5V   PROD
## 1    21   1   45  2  3    4 52 23.3 108.00  67  15.2  442.7
## 2    21   2   46  1  4    2 47 18.4  97.00  85  13.8  183.7
## 3    21   3   41  1  3    2 57 24.6 102.00  70  15.7  540.1
## 4    21   4   45  2  4    2 66 11.0  78.00  50   9.4  513.8
## 5    22   1   46  2  3    2 35 22.3  99.20  68  16.4  253.7
## 6    22   2   45  2  3    4 52 17.5  81.00  62  13.0   97.9
## 7    22   3   45  2  3    4 52 23.3 108.00  67  15.2  442.7
## 8    22   4   45  3  2    3 54 19.8 106.00  62  15.0  165.3
## 9    23   1   45  1  4    2 54 20.2  98.90  78  15.5  528.6
## 10   23   2   46  1  4    2 49 20.8  99.00  66  15.4   90.3
## 11   23   3   45  2  3    3 49 22.7  99.00  63  14.7  240.7
## 12   23   4   47  1  3    3 57 19.0  86.00  57  13.7  376.6
## 13   24   1   46  3  4    4 43 22.5  92.00  71  13.7  270.1
## 14   24   2   43  1  3    4 57 16.9  92.00  67  13.3  400.4
## 15   24   3   45  1  3    2 65 16.9  90.00  62  13.7  439.8
## 16   24   4   46  2  3    3 67 20.3  85.00  69  16.6  209.2
## 17   25   1   43  3  3    3 47 16.9  84.00  66  12.6  259.6
## 18   25   2   38  1  4    2 39 19.0  86.00  68  14.0  364.1
## 19   25   3   40  1  4    2 62 17.6  93.00  67  12.9  408.0
## 20   25   4   40  1  4    2 60 16.2  91.00  75  12.1  521.4
## 21   26   1   44  3  3    3 30 19.7 108.00  74  14.0   89.9
## 22   26   2   40  2  3    3 38 16.0  98.00  52  11.0  422.0
## 23   26   3   40  2  3    3 54 16.9 103.00  63  12.4  550.7
## 24   26   4   40  2  3    3 50 16.3  98.00  58  11.8  454.9
## 25   27   1   40  3  3    4 38 14.2  88.00  58   9.3  510.5
## 26   27   2   40  1  4    2 28 15.2  97.00  68  12.1  716.3
## 27   27   3   40  2  3    3 56 19.7 109.00  72  16.4 1016.2
## 28   27   4   40  1  3    4 68 18.8  96.00  54  13.0  529.8
## 29   28   1   37  1  3    2 28 21.2 103.00  71  15.9  412.1
## 30   28   2   40  2  3    3 32 14.0  92.00  67  11.5  723.9
## 31   28   3   40  1  3    3 26 15.8  96.00  63  12.6  605.8
## 32   28   4   40  2  3    3 61 16.1 102.00  56  12.4  560.7
## 33   29   1   40  2  3    3 45 17.6  96.00  64  13.0  586.7
## 34   29   2   40  1  2    3 49 15.4  95.00  61  11.6  657.1
## 35   29   3   40  3  2    4 32 16.4  92.00  58  12.8  330.5
## 36   29   4   40  2  2    4 62 16.4  94.00  58  11.5  463.0
## 37   30   1   40  3  2    4 27 18.3  98.00  71  13.1  268.1
## 38   30   2   38  3  3    4 43 19.1 101.00  69  13.9  561.4
## 39   30   3   40  2  3    3 50 19.6 111.00  68  15.4  672.6
## 40   30   4   40  3  2    4 60 15.9  92.00  60  14.4  606.2
## 41   31   1   41  1  4    1 25 14.4  86.00  63  11.8  562.1
## 42   31   2   40  1  3    2 56 11.4  75.00  56   8.9  785.9
## 43   31   3   40  1  3    2 52 14.1  89.00  63  11.3  663.9
## 44   31   4   40  1  3    4 69 16.4 100.00  64  15.2  785.0
## 45   32   1   40  1  2    3 20 15.9  91.00  62  12.1  470.0
## 46   32   2   38  1  3    3 34 22.0 112.00  74  16.7  369.1
## 47   32   3   40  1  3    3 43 16.4  94.00  55  13.2  656.3
## 48   32   4   40  1  3    4 69 16.9 103.00  68  13.7  688.2
## 49   33   1   41  1  4    1 46 13.6  82.00  59  11.2  622.6
## 50   33   2   40  1  3    2 21 16.6  96.00  70  13.6  392.0
## 51   33   3   40  1  3    2 69 16.2  94.00  69  13.4  728.4
## 52   33   4   43  1  4    2 57 17.7  81.00  62  13.0  389.1
## 53   34   1   40  1  2    2 26 14.9  89.00  59  11.2  378.5
## 54   34   2   40  1  3    2 52 14.6  96.00  56  11.2  614.8
## 55   34   3   38  1  4    2 55 19.0 103.00  74  15.2  951.4
## 56   34   4   40  1  3    2 41 15.0  88.00  61  12.9  917.0
## 57   35   1   41  1  3    2 42 17.1 100.00  72  13.2  363.4
## 58   35   2   40  2  3    3 43 14.9  99.00  65  11.0  579.7
## 59   35   3   40  1  3    3 48 15.9  99.00  72  12.5  707.2
## 60   35   4   40  1  3    2 57 20.4 103.00  80  16.1  550.2
## 61   36   1   37  1  3    2 22 18.3 100.00  66  14.2  443.1
## 62   36   2   38  1  4    3 57 16.9  92.00  67  13.3  400.4
## 63   36   3   40  1  2    3 44 15.7  96.00  50  11.7  392.2
## 64   36   4   40  2  2    4 60 17.3  97.00  61  13.2  223.9
## 65   37   1   44  2  2    3 30 20.0 106.00  66  14.7  269.1
## 66   37   2   38  3  2    4 20 19.9 106.00  64  15.0  477.0
## 67   37   3   40  3  3    5 31 20.2 111.00  67  15.2  579.1
## 68   37   4   42  3  3    3 56 17.8  99.00  57  13.8  486.6
## 69   38   1   45  2  3    3 40 13.9  83.00  52  10.0  231.3
## 70   38   2   40  2  3    4 50 12.8  72.00  52  10.2  724.0
## 71   38   3   40  1  4    2 76 14.8  89.00  50  10.4  434.1
## 72   38   4   42  1  3    2 65 15.1  81.00  59  12.4  380.8
## 73   39   1   40  1  3    2 30 14.5  79.00  53  12.0  437.7
## 74   39   2   38  1  2    2 27 14.0  80.00  41  11.3  261.3
## 75   39   3   40  1  3    2 39 17.1  88.00  50  12.2  168.3
## 76   39   4   40  1  3    2 43 14.8  69.00  48  12.3  541.9
## 77   40   1   41  1  3    2 47 18.0  98.00  69  14.1  879.0
## 78   40   2   40  1  3    3 47 18.3  99.00  68  14.6  700.0
## 79   40   3   38  1  3    4 33 16.4   1.00  55 109.0  789.6
## 80   40   4   40  1  3    3 51 18.0   1.01  56 131.0  646.4

GRÁFICOS EM R

FUNÇÃO PLOT

x = rnorm(100) 
y = rnorm(100) 

plot(x, y) 

Gráfico com mais parâmetros:

plot(x, y,
     xlab="100 números quaisquer",
     ylab="Outros 100 números",
     xlim=c(-2,3),
     ylim=c(-3,2),
     col="red",
     pch=22,
     bg="yellow",
     tcl=0.4,
     las=1,
     cex=1.5,
     bty="l",
     frame = FALSE) 

Linhas de tendência

plot(x,
     xlab="100 números quaisquer",
     ylab="Outros 100 números",
     xlim=c(0,100),
     ylim=c(-3,3),
     col="red",
     pch=22,
     bg="yellow",
     tcl=0.4,
     las=1,
     cex=1.5,
     bty="l",
     frame = FALSE) 

points(y,col="red",
       pch=21,
       bg="orange",
       cex = 1.5)
z = c(x,y)
lines(z)
w = rep(mean(c(x,z)),100)
lines(w, lwd = 2, col = "red")

Gráfico de Barras:

barplot(x)

barplot(x, main="Gráficos de barras", xlab="Valores", ylab="Probabilidades", 
     col="orange", 
     border="red",
     col.axis="blue") 

Histograma:

x3 <- rnorm(5000)

hist(x3,freq=TRUE,xlab="",ylab="",main="", breaks = 50)

Densidade:

d = density(x3)
plot(d)

lines(d, col = "blue")
polygon(d, col="red", border="blue") 

BoxPlot:

feijao$REP = as.factor(feijao$REP)
feijao$TRAT = as.factor(feijao$TRAT)

boxplot(feijao$PROD~feijao$TRAT, col = "yellow", las=2, horizontal = T) 

Ordenando por médias:
medias <- reorder(feijao$TRAT,feijao$PROD, mean)
boxplot(feijao$PROD~medias, col = "yellow", las=2, ylab = "Produção") 

linha de média:
medias2 <- by(feijao$PROD, feijao$TRAT, mean)
box = boxplot(feijao$PROD~feijao$TRAT, col = "yellow", las=2) 

lines(1:20, medias2)
points(1:20, medias2)

text(1:20, medias2, 
     labels = formatC(medias2, 
                      format = "f", 
                      digits = 1),
     pos = 2, cex = 0.9, col = "red")

Gráfico pizza (Fonte : https://www.statmethods.net/)

slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels

pie(slices,labels = lbls, col=rainbow(length(lbls)),
    main="Pie Chart of Countries") 

GGPLOT2

Instalando e carregando pacotes

library(ggpubr)
## Loading required package: ggplot2
library(ggplot2)
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths

Densidades:

wdata = data.frame(
  sex = factor(rep(c("F", "M"), each=200)),
  weight = c(rnorm(200, 55), rnorm(200, 58)))

ggdensity(wdata, x = "weight",
          add = "mean", rug = TRUE,
          color = "sex", fill = "sex",
          palette = c("#00AFBB", "#E7B800"))

Histogramas:

gghistogram(wdata, x = "weight",
            add = "mean", rug = TRUE,
            color = "sex", fill = "sex",
            palette = c("#00AFBB", "#E7B800"))
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.

Gráficos de pixels e densidade:

a <- data.frame( x=rnorm(20000, 10, 1.9), y=rnorm(20000, 10, 1.2) )
b <- data.frame( x=rnorm(20000, 14.5, 1.9), y=rnorm(20000, 14.5, 1.9) )
c <- data.frame( x=rnorm(20000, 9.5, 1.9), y=rnorm(20000, 15.5, 1.9) )

data <- rbind(a,b,c)
ggplot(data, aes(x=x, y=y) ) +
  geom_bin2d() +
  theme_bw()

ggplot(data, aes(x=x, y=y) ) +
  geom_bin2d(bins = 70) +
  scale_fill_continuous(type = "viridis") +
  theme_bw()

ggplot(data, aes(x=x, y=y) ) +
  stat_density_2d(aes(fill = ..level..), geom = "polygon", colour="white")

ggplot(data, aes(x=x, y=y) ) +
  stat_density_2d(aes(fill = ..density..), geom = "raster", contour = FALSE) +
  scale_fill_distiller(palette= "Spectral", direction=1) +
  scale_x_continuous(expand = c(0, 0)) +
  scale_y_continuous(expand = c(0, 0)) +
  theme(
    legend.position='none'
  )

Boxplot

adubo = read.table("Doses_adubo.txt", header = TRUE)

p <- ggboxplot(adubo, x = "dose", y = "len",
               color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"),
               add = "jitter", shape = "dose")
p

boxplot com Comparações de médias:

comparacoes <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2"))
p + stat_compare_means(comparisons = comparacoes)
## Warning in wilcox.test.default(c(4.2, 11.5, 7.3, 5.8, 6.4, 10, 11.2, 11.2, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(4.2, 11.5, 7.3, 5.8, 6.4, 10, 11.2, 11.2, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(16.5, 16.5, 15.2, 17.3, 22.5, 17.3, 13.6, :
## cannot compute exact p-value with ties

p  + stat_compare_means(label.y = 50)   

Tipo violino:

gv = ggviolin(adubo, x = "dose", y = "len", fill = "dose",
         palette = c("#00AFBB", "#E7B800", "#FC4E07"),
         add = "boxplot", add.params = list(fill = "white"))
gv

Boxplot maior (dados simulados)

Dados.simulados = expand.grid(Gen = factor(1:10), Rep = factor(1:3), Local = factor(1:20), Regiao = c("Norte", "Nordeste", "Sul"))
prod.1 = rnorm(600, mean = 3000, sd = 1000)
prod.2 = rnorm(600, mean = 1500, sd = 500)
prod.3 = rnorm(600, mean = 500, sd = 300)
prod.4 = c(prod.1,prod.2,prod.3)
prod.4 = round(abs(prod.4),digits = 2)
Dados.simulados$Prod = prod.4
Locais = rep(1:60, each = 30)
Dados.simulados$Local = factor(Locais)
prod.ord <- with(Dados.simulados, reorder(Local,Prod, median))
ggplot(Dados.simulados, aes(as.factor(prod.ord), Prod, fill = Regiao)) +
  geom_boxplot() + 
  theme_bw()+
  ylab("Produtividade") + 
  xlab("Locais") +
  theme(axis.text.x=element_text(angle=-90),legend.position = c(.2, .8),
        legend.text = element_text(size = 17))

Grafico de barras:

data("mtcars")
dados = mtcars

dados$cyl <- as.factor(dados$cyl)
dados$name <- rownames(dados)

ggbarplot(dados, x = "name", y = "mpg",
          fill = "cyl",               # change fill color by cyl
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "desc",          # Sort the value in dscending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90           # Rotate vertically x axis texts
)

Gráfico de desvios em barras:

dados$mpg_z <- (dados$mpg -mean(dados$mpg))/sd(dados$mpg)
dados$mpg_grp <- factor(ifelse(dados$mpg_z < 0, "baixo", "alto"), 
                      levels = c("baixo", "alto"))

  ggbarplot(dados, x = "name", y = "mpg_z",
            fill = "mpg_grp",
            color = "white",            # Set bar border colors to white
            palette = "jco",            # jco journal color palett. see ?ggpar
            sort.val = "asc",           # Sort the value in ascending order
            sort.by.groups = FALSE,     # Don't sort inside each group
            x.text.angle = 90,          # Rotate vertically x axis texts
            ylab = "MPG z-score",
            xlab = FALSE,
            legend.title = "MPG"
  )

ggbarplot(dados, x = "name", y = "mpg_z",
            fill = "mpg_grp",           
            color = "white",            
            palette = "jco",            
            sort.val = "desc",          
            sort.by.groups = FALSE,     
            x.text.angle = 90,          
            ylab = "MPG z-score",
            legend.title = "MPG Group",
            rotate = TRUE,
            ggtheme = theme_minimal()
  )

Gráfico de pontos:

  ggdotchart(dados, x = "name", y = "mpg_z",
             color = "cyl",                                # Color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
             sorting = "descending",                       # Sort value in descending order
             add = "segments",                             # Add segments from y = 0 to dots
             add.params = list(color = "lightgray", size = 2), # Change segment color and size
             group = "cyl",                                # Order by groups
             dot.size = 6,                                 # Large dot size
             label = round(dados$mpg_z,1),                        # Add mpg values as dot labels
             font.label = list(color = "white", size = 9, 
                               vjust = 0.5),               # Adjust label parameters
             ggtheme = theme_pubr()                        # ggplot2 theme
  )+
    geom_hline(yintercept = 0, linetype = 2, color = "lightgray")

Gráfico de bolhas:

  library(gapminder)
  data <- gapminder %>% filter(year=="2007") %>% dplyr::select(-year)
  
  data %>%
    arrange(desc(pop)) %>%
    mutate(country = factor(country, country)) %>%
    ggplot(aes(x=gdpPercap, y=lifeExp, size=pop, color=continent)) +
    geom_point(alpha=0.5) +
    scale_size(range = c(.1, 24), name="Population (M)")