Data were mean electromyographic (EMG) amplitudes in the left brow region, measured over 90 seconds in response to different kind of music presented to 22 subjects. Measurements were taken while the subjects listened to each of four kinds of music: a relaxing piece, followed by pieces designed to elicit positive affect, agitation, and sadness.

Source: Vasey, M.W., & Thayer, J.F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: A multivariate solution. Psychophysiology, 24, 479-486.

pacman::p_load(tidyverse, nlme, car)
dta<- read.table("left_brow_emg.txt", h=T)
head(dta)
##   Patient Relax Positive Agitate Sad
## 1     S01   143      368     345 772
## 2     S02   142      155     161 178
## 3     S03   109      167     356 956
## 4     S04   123      135     137 187
## 5     S05   276      216     232 307
## 6     S06   235      386     398 425
# means & variances
colMeans(dta[, -1])
##    Relax Positive  Agitate      Sad 
## 217.6364 260.7273 394.3636 559.1364
var(dta[, -1]) #variance matrice
##             Relax  Positive   Agitate        Sad
## Relax    9929.385  8100.229  9589.853   8600.814
## Positive 8100.229 14768.113 13425.056  11809.420
## Agitate  9589.853 13425.056 45621.481  39267.710
## Sad      8600.814 11809.420 39267.710 170963.838
cor(dta[, -1])
##              Relax  Positive   Agitate       Sad
## Relax    1.0000000 0.6689192 0.4505739 0.2087499
## Positive 0.6689192 1.0000000 0.5172124 0.2350249
## Agitate  0.4505739 0.5172124 1.0000000 0.4446300
## Sad      0.2087499 0.2350249 0.4446300 1.0000000
# wide format to long format
dtaL <- gather(dta, key = "Emotion", value = "EMG", 2:5) %>%
        mutate(Emotion = as.factor(Emotion))
str(dtaL)
## 'data.frame':    88 obs. of  3 variables:
##  $ Patient: chr  "S01" "S02" "S03" "S04" ...
##  $ Emotion: Factor w/ 4 levels "Agitate","Positive",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ EMG    : int  143 142 109 123 276 235 208 267 183 245 ...
# set plot theme to black and white
# this removes the default gray background
ot <- theme_set(theme_bw())

ggplot(data = dtaL, aes(reorder(Emotion, EMG, mean), EMG)) +
 geom_point(pch = 20, col="gray") +
 stat_summary(fun.data = "mean_cl_boot", size = rel(1.1)) + 
 geom_hline(yintercept = mean(dtaL$EMG), lty = 2) +
 coord_flip()+
 labs(x = "Emotion", y = "Mean EMG Amplitude") 

univariate analysis

  • aov should only be used for balanced data
  • change the contrasts option to from default treatment type to sum type
  • this is to ensure type III SSQ is used (contrast=list(Emotion=“contr.sum”))
summary(m0 <- aov(EMG ~ Emotion + Error(Patient/Emotion), 
                  contrasts = list(Emotion = "contr.sum"), data = dtaL))
## 
## Error: Patient
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Residuals 21 2220062  105717               
## 
## Error: Patient:Emotion
##           Df  Sum Sq Mean Sq F value  Pr(>F)    
## Emotion    3 1560726  520242   11.51 4.1e-06 ***
## Residuals 63 2846877   45189                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# same if you do not test for the patient effects here
summary(m0a <- lm(EMG ~ Patient + Emotion, data = dtaL))
## 
## Call:
## lm(formula = EMG ~ Patient + Emotion, data = dtaL)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -366.51 -127.98  -33.65  103.93  749.08 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       443.40     113.30   3.913 0.000226 ***
## PatientS02       -248.00     150.31  -1.650 0.103945    
## PatientS03        -10.00     150.31  -0.067 0.947169    
## PatientS04       -261.50     150.31  -1.740 0.086797 .  
## PatientS05       -149.25     150.31  -0.993 0.324546    
## PatientS06        -46.00     150.31  -0.306 0.760594    
## PatientS07       -186.25     150.31  -1.239 0.219915    
## PatientS08        116.50     150.31   0.775 0.441213    
## PatientS09        -54.50     150.31  -0.363 0.718136    
## PatientS10        210.00     150.31   1.397 0.167292    
## PatientS11         65.75     150.31   0.437 0.663304    
## PatientS12          9.00     150.31   0.060 0.952445    
## PatientS13       -258.25     150.31  -1.718 0.090695 .  
## PatientS14         14.25     150.31   0.095 0.924773    
## PatientS15       -317.50     150.31  -2.112 0.038636 *  
## PatientS16       -154.25     150.31  -1.026 0.308728    
## PatientS17        -55.25     150.31  -0.368 0.714430    
## PatientS18       -194.50     150.31  -1.294 0.200403    
## PatientS19        125.50     150.31   0.835 0.406918    
## PatientS20        -86.00     150.31  -0.572 0.569266    
## PatientS21        294.75     150.31   1.961 0.054315 .  
## PatientS22        106.75     150.31   0.710 0.480213    
## EmotionPositive  -133.64      64.09  -2.085 0.041127 *  
## EmotionRelax     -176.73      64.09  -2.757 0.007616 ** 
## EmotionSad        164.77      64.09   2.571 0.012521 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 212.6 on 63 degrees of freedom
## Multiple R-squared:  0.5705, Adjusted R-squared:  0.4068 
## F-statistic: 3.486 on 24 and 63 DF,  p-value: 3.773e-05

multivariate approach

# make ellipses in pairwise plot
scatterplotMatrix(~ Relax + Positive + Agitate + Sad, data = dta, smooth = F, 
                  reg.line = F, ellipse = T, diag = "none", col = "darkgray") 

  • repeated measures within-factor
  • make sure you do not include the ID as part of the variables to be analyzed
emo <- as.factor(colnames(dta[, -1]))
  • run the usual linear model first and save the output object
  • this is a one-sample design, Intercept is the only predictor
m1 <- lm(as.matrix(dta[, -1]) ~ 1)

-idata, idesign inform Anova the repeated measures design

m1m <- Anova(m1, idata = data.frame(emo), idesign = ~ emo)
# report only univariate output
summary(m1m, multivariate = F)
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##               Sum Sq num Df Error SS den Df F value    Pr(>F)    
## (Intercept) 11276284      1  2220062     21 106.665 1.098e-09 ***
## emo          1560726      3  2846877     63  11.513 4.104e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##     Test statistic    p-value
## emo        0.10299 1.6884e-08
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##      GG eps Pr(>F[GG])    
## emo 0.48021  0.0006406 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##        HF eps   Pr(>F[HF])
## emo 0.5060518 0.0004967266
# report only multivariate output
summary(m1m, univariate = F)
## 
## Type III Repeated Measures MANOVA Tests:
## 
## ------------------------------------------
##  
## Term: (Intercept) 
## 
##  Response transformation matrix:
##          (Intercept)
## Relax              1
## Positive           1
## Agitate            1
## Sad                1
## 
## Sum of squares and products for the hypothesis:
##             (Intercept)
## (Intercept)    45105136
## 
## Multivariate Tests: (Intercept)
##                  Df test stat approx F num Df den Df    Pr(>F)    
## Pillai            1  0.835506 106.6646      1     21 1.098e-09 ***
## Wilks             1  0.164494 106.6646      1     21 1.098e-09 ***
## Hotelling-Lawley  1  5.079265 106.6646      1     21 1.098e-09 ***
## Roy               1  5.079265 106.6646      1     21 1.098e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ------------------------------------------
##  
## Term: emo 
## 
##  Response transformation matrix:
##          emo1 emo2 emo3
## Relax       0    0    1
## Positive    0    1    0
## Agitate     1    0    0
## Sad        -1   -1   -1
## 
## Sum of squares and products for the hypothesis:
##           emo1    emo2    emo3
## emo1  597301.1 1081733 1237938
## emo2 1081733.0 1959056 2241948
## emo3 1237937.5 2241948 2565690
## 
## Multivariate Tests: emo
##                  Df test stat approx F num Df den Df    Pr(>F)   
## Pillai            1 0.5474483 7.661383      3     19 0.0014864 **
## Wilks             1 0.4525517 7.661383      3     19 0.0014864 **
## Hotelling-Lawley  1 1.2096921 7.661383      3     19 0.0014864 **
## Roy               1 1.2096921 7.661383      3     19 0.0014864 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mixed-effects analysis

covariance patterns - same as using lm except for estimation methods

summary(m0b <- gls(EMG ~ Patient + Emotion, data = dtaL))
## Generalized least squares fit by REML
##   Model: EMG ~ Patient + Emotion 
##   Data: dtaL 
##        AIC      BIC    logLik
##   944.4433 1000.165 -446.2216
## 
## Coefficients:
##                     Value Std.Error   t-value p-value
## (Intercept)      443.3977 113.30335  3.913368  0.0002
## PatientS02      -248.0000 150.31388 -1.649881  0.1039
## PatientS03       -10.0000 150.31388 -0.066527  0.9472
## PatientS04      -261.5000 150.31388 -1.739693  0.0868
## PatientS05      -149.2500 150.31388 -0.992922  0.3245
## PatientS06       -46.0000 150.31388 -0.306026  0.7606
## PatientS07      -186.2500 150.31388 -1.239074  0.2199
## PatientS08       116.5000 150.31388  0.775045  0.4412
## PatientS09       -54.5000 150.31388 -0.362575  0.7181
## PatientS10       210.0000 150.31388  1.397077  0.1673
## PatientS11        65.7500 150.31388  0.437418  0.6633
## PatientS12         9.0000 150.31388  0.059875  0.9524
## PatientS13      -258.2500 150.31388 -1.718072  0.0907
## PatientS14        14.2500 150.31388  0.094802  0.9248
## PatientS15      -317.5000 150.31388 -2.112247  0.0386
## PatientS16      -154.2500 150.31388 -1.026186  0.3087
## PatientS17       -55.2500 150.31388 -0.367564  0.7144
## PatientS18      -194.5000 150.31388 -1.293959  0.2004
## PatientS19       125.5000 150.31388  0.834920  0.4069
## PatientS20       -86.0000 150.31388 -0.572136  0.5693
## PatientS21       294.7500 150.31388  1.960897  0.0543
## PatientS22       106.7500 150.31388  0.710181  0.4802
## EmotionPositive -133.6364  64.09405 -2.085004  0.0411
## EmotionRelax    -176.7273  64.09405 -2.757312  0.0076
## EmotionSad       164.7727  64.09405  2.570796  0.0125
## 
##  Correlation: 
##                 (Intr) PtnS02 PtnS03 PtnS04 PtnS05 PtnS06 PtnS07 PtnS08 PtnS09
## PatientS02      -0.663                                                        
## PatientS03      -0.663  0.500                                                 
## PatientS04      -0.663  0.500  0.500                                          
## PatientS05      -0.663  0.500  0.500  0.500                                   
## PatientS06      -0.663  0.500  0.500  0.500  0.500                            
## PatientS07      -0.663  0.500  0.500  0.500  0.500  0.500                     
## PatientS08      -0.663  0.500  0.500  0.500  0.500  0.500  0.500              
## PatientS09      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500       
## PatientS10      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS11      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS12      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS13      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS14      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS15      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS16      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS17      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS18      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS19      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS20      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS21      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS22      -0.663  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## EmotionPositive -0.283  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## EmotionRelax    -0.283  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## EmotionSad      -0.283  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
##                 PtnS10 PtnS11 PtnS12 PtnS13 PtnS14 PtnS15 PtnS16 PtnS17 PtnS18
## PatientS02                                                                    
## PatientS03                                                                    
## PatientS04                                                                    
## PatientS05                                                                    
## PatientS06                                                                    
## PatientS07                                                                    
## PatientS08                                                                    
## PatientS09                                                                    
## PatientS10                                                                    
## PatientS11       0.500                                                        
## PatientS12       0.500  0.500                                                 
## PatientS13       0.500  0.500  0.500                                          
## PatientS14       0.500  0.500  0.500  0.500                                   
## PatientS15       0.500  0.500  0.500  0.500  0.500                            
## PatientS16       0.500  0.500  0.500  0.500  0.500  0.500                     
## PatientS17       0.500  0.500  0.500  0.500  0.500  0.500  0.500              
## PatientS18       0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500       
## PatientS19       0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS20       0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS21       0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## PatientS22       0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## EmotionPositive  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## EmotionRelax     0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## EmotionSad       0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
##                 PtnS19 PtnS20 PtnS21 PtnS22 EmtnPs EmtnRl
## PatientS02                                               
## PatientS03                                               
## PatientS04                                               
## PatientS05                                               
## PatientS06                                               
## PatientS07                                               
## PatientS08                                               
## PatientS09                                               
## PatientS10                                               
## PatientS11                                               
## PatientS12                                               
## PatientS13                                               
## PatientS14                                               
## PatientS15                                               
## PatientS16                                               
## PatientS17                                               
## PatientS18                                               
## PatientS19                                               
## PatientS20       0.500                                   
## PatientS21       0.500  0.500                            
## PatientS22       0.500  0.500  0.500                     
## EmotionPositive  0.000  0.000  0.000  0.000              
## EmotionRelax     0.000  0.000  0.000  0.000  0.500       
## EmotionSad       0.000  0.000  0.000  0.000  0.500  0.500
## 
## Standardized residuals:
##        Min         Q1        Med         Q3        Max 
## -1.7241433 -0.6020576 -0.1582857  0.4888895  3.5238212 
## 
## Residual standard error: 212.5759 
## Degrees of freedom: 88 total; 63 residual

unequal variances and same correlation(gls)

summary(m2 <- gls(EMG ~ Emotion, 
                  weights = varIdent(form = ~ 1 | Emotion),
                  correlation = corCompSymm(form = ~ 1 | Patient), 
                  data = dtaL))
## Generalized least squares fit by REML
##   Model: EMG ~ Emotion 
##   Data: dtaL 
##        AIC      BIC    logLik
##   1124.511 1146.388 -553.2555
## 
## Correlation Structure: Compound symmetry
##  Formula: ~1 | Patient 
##  Parameter estimate(s):
##       Rho 
## 0.4245937 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Emotion 
##  Parameter estimates:
##    Relax Positive  Agitate      Sad 
## 1.000000 1.205723 2.124736 4.401306 
## 
## Coefficients:
##                     Value Std.Error   t-value p-value
## (Intercept)      394.3636  44.74068  8.814431  0.0000
## EmotionPositive -133.6364  41.00877 -3.258726  0.0016
## EmotionRelax    -176.7273  40.55987 -4.357196  0.0000
## EmotionSad       164.7727  84.08261  1.959653  0.0534
## 
##  Correlation: 
##                 (Intr) EmtnPs EmtnRl
## EmotionPositive -0.828              
## EmotionRelax    -0.883  0.809       
## EmotionSad      -0.064  0.220  0.196
## 
## Standardized residuals:
##        Min         Q1        Med         Q3        Max 
## -1.4360744 -0.7807650 -0.2423782  0.6585354  3.1019030 
## 
## Residual standard error: 98.76635 
## Degrees of freedom: 88 total; 84 residual

unequal variances and unstructured correlations(gls)

summary(m3 <- gls(EMG ~ Emotion, 
                  weights = varIdent(form = ~ 1 | Emotion),
                  correlation = corSymm(form = ~ 1 | Patient), 
                  data = dtaL))
## Generalized least squares fit by REML
##   Model: EMG ~ Emotion 
##   Data: dtaL 
##        AIC      BIC    logLik
##   1127.745 1161.776 -549.8723
## 
## Correlation Structure: General
##  Formula: ~1 | Patient 
##  Parameter estimate(s):
##  Correlation: 
##   1     2     3    
## 2 0.669            
## 3 0.451 0.517      
## 4 0.209 0.235 0.445
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Emotion 
##  Parameter estimates:
##    Relax Positive  Agitate      Sad 
## 1.000000 1.219558 2.143505 4.149460 
## 
## Coefficients:
##                     Value Std.Error   t-value p-value
## (Intercept)      394.3636  45.53790  8.660120  0.0000
## EmotionPositive -133.6364  39.04513 -3.422613  0.0010
## EmotionRelax    -176.7273  40.66006 -4.346459  0.0000
## EmotionSad       164.7727  79.21513  2.080066  0.0406
## 
##  Correlation: 
##                 (Intr) EmtnPs EmtnRl
## EmotionPositive -0.823              
## EmotionRelax    -0.885  0.879       
## EmotionSad      -0.080  0.070  0.076
## 
## Standardized residuals:
##        Min         Q1        Med         Q3        Max 
## -1.4109335 -0.7650935 -0.2381349  0.6510508  3.0745201 
## 
## Residual standard error: 99.646 
## Degrees of freedom: 88 total; 84 residual

unequal variances and unstructured correlations (lme)

summary(m4 <- lme(EMG ~ Emotion, random = ~ 1 | Patient, 
                  weights = varIdent(form = ~ 1 | Emotion),
                  correlation = corCompSymm(form = ~ 1 | Patient), 
                  data = dtaL))
## Linear mixed-effects model fit by REML
##  Data: dtaL 
##        AIC     BIC    logLik
##   1121.332 1145.64 -550.6659
## 
## Random effects:
##  Formula: ~1 | Patient
##         (Intercept) Residual
## StdDev:    83.51979 57.91493
## 
## Correlation Structure: Compound symmetry
##  Formula: ~1 | Patient 
##  Parameter estimate(s):
##       Rho 
## 0.3390305 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Emotion 
##  Parameter estimates:
##    Relax Positive  Agitate      Sad 
## 1.000000 1.588484 3.404611 7.209578 
## Fixed effects: EMG ~ Emotion 
##                     Value Std.Error DF   t-value p-value
## (Intercept)      394.3636  45.65416 63  8.638066  0.0000
## EmotionPositive -133.6364  39.91051 63 -3.348400  0.0014
## EmotionRelax    -176.7273  39.59459 63 -4.463420  0.0000
## EmotionSad       164.7727  84.58341 63  1.948050  0.0559
##  Correlation: 
##                 (Intr) EmtnPs EmtnRl
## EmotionPositive -0.816              
## EmotionRelax    -0.880  0.882       
## EmotionSad      -0.129  0.240  0.208
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.1316206 -0.6892089 -0.2082434  0.4716320  2.5200430 
## 
## Number of Observations: 88
## Number of Groups: 22

comparing models

anova(m2, m3, m4)
##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## m2     1  9 1124.511 1146.388 -553.2555                        
## m3     2 14 1127.745 1161.776 -549.8723 1 vs 2 6.766257  0.2386
## m4     3 10 1121.332 1145.640 -550.6659 2 vs 3 1.587102  0.8111
# show estimated covariance
intervals(m4, which= "var-cov")
## Approximate 95% confidence intervals
## 
##  Random Effects:
##   Level: Patient 
##                    lower     est.    upper
## sd((Intercept)) 50.67523 83.51979 137.6522
## 
##  Correlation structure:
##           lower      est.     upper
## Rho 0.004190219 0.3390305 0.6710206
## attr(,"label")
## [1] "Correlation structure:"
## 
##  Variance function:
##              lower     est.     upper
## Positive 0.6064687 1.588484  4.160614
## Agitate  1.4249696 3.404611  8.134474
## Sad      3.0221699 7.209578 17.198904
## attr(,"label")
## [1] "Variance function:"
## 
##  Within-group standard error:
##     lower      est.     upper 
##  24.65004  57.91493 136.07034

residual plots

plot(m0b, resid(., type = "pearson") ~ fitted(.) | Emotion,
     layout = c(4, 1), aspect = 2, abline = 0, pch = 20, cex = .8,
     ylim = c(-2, 3.3),
     xlab = "Ftted values", ylab = "Pearson residuals", main = "Linear model")

plot(m3, resid(., type = "pearson") ~ fitted(.) | Emotion,
     layout = c(4, 1), aspect = 2, abline = 0, pch = 20, cex = .8,
     ylim = c(-2, 3.3),
     xlab = "Ftted values", ylab = "Pearson residuals", main = "Covariance patterns")

plot(m4, resid(., type = "pearson") ~ fitted(.) | Emotion,
     layout = c(4, 1), aspect = 2, abline = 0, pch = 20, cex = .8,
     ylim = c(-2, 3.3),
     xlab = "Ftted values", ylab = "Pearson residuals", 
     main = "Covariance patterns + random effects")

dta_m4 <- data.frame(dtaL, M4 = fitted(m4), M0 = fitted(m0b))

dtaL_m4 <- dta_m4 %>% 
           unite(PE, Patient, Emotion) %>%
           gather(key = Model, value = Estimate, 2:4) %>%
           separate(PE, c("Patient", "Emotion"))
ggplot(dtaL_m4, aes(reorder(Emotion, Estimate, mean), Estimate, color = Model)) +
 stat_summary(fun.data = mean_se, geom = "errorbar", 
              width = .2, position = position_dodge(.2)) +
 coord_flip()+
 labs(x = "Emotion", y = "Mean EMG") +
 theme(legend.position = c(.9, .2))