library(readr)
library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(tidyverse)
## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ tibble 3.0.3 ✓ dplyr 1.0.1
## ✓ tidyr 1.1.1 ✓ stringr 1.4.0
## ✓ purrr 0.3.4 ✓ forcats 0.5.0
## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks plotly::filter(), stats::filter()
## x dplyr::lag() masks stats::lag()
library(RColorBrewer)
setwd("/Users/tiffanyking/Desktop/Data 110")
countries <- read_csv("Nations.csv")
## Parsed with column specification:
## cols(
## iso2c = col_character(),
## iso3c = col_character(),
## country = col_character(),
## year = col_double(),
## gdp_percap = col_double(),
## population = col_double(),
## birth_rate = col_double(),
## neonat_mortal_rate = col_double(),
## region = col_character(),
## income = col_character()
## )
nations <- na.omit(countries)
land <- nations %>% mutate(GDP =gdp_percap* population/10^12)
df1<- land %>%
select(country, year, GDP) %>%
filter(country== c("Jamaica", "Barbados","Cuba", "Dominican Republic"))
## Warning in country == c("Jamaica", "Barbados", "Cuba", "Dominican Republic"):
## longer object length is not a multiple of shorter object length
df1
## # A tibble: 24 x 3
## country year GDP
## <chr> <dbl> <dbl>
## 1 Barbados 2007 0.00418
## 2 Barbados 2011 0.00432
## 3 Barbados 1994 0.00230
## 4 Barbados 1997 0.00271
## 5 Barbados 2004 0.00342
## 6 Barbados 2012 0.00441
## 7 Cuba 2011 0.214
## 8 Cuba 2007 0.182
## 9 Cuba 1998 0.0852
## 10 Cuba 1990 0.0937
## # … with 14 more rows
Carribean_Chart <- ggplot(df1, aes(x = year, y = GDP)) +
xlab("Year") +
ylab("GDP (Trillions)") +
theme_minimal(base_size = 14)
Carribean_Chart
## Line Chart
Carribean_Chart +
geom_line(aes(color=country)) +
geom_point(aes(color=country)) +
ggtitle("GDP by Latin America & Carribean Countries ")
scale_color_brewer(palette = "Set1")
## <ggproto object: Class ScaleDiscrete, Scale, gg>
## aesthetics: colour
## axis_order: function
## break_info: function
## break_positions: function
## breaks: waiver
## call: call
## clone: function
## dimension: function
## drop: TRUE
## expand: waiver
## get_breaks: function
## get_breaks_minor: function
## get_labels: function
## get_limits: function
## guide: legend
## is_discrete: function
## is_empty: function
## labels: waiver
## limits: NULL
## make_sec_title: function
## make_title: function
## map: function
## map_df: function
## n.breaks.cache: NULL
## na.translate: TRUE
## na.value: NA
## name: waiver
## palette: function
## palette.cache: NULL
## position: left
## range: <ggproto object: Class RangeDiscrete, Range, gg>
## range: NULL
## reset: function
## train: function
## super: <ggproto object: Class RangeDiscrete, Range, gg>
## rescale: function
## reset: function
## scale_name: brewer
## train: function
## train_df: function
## transform: function
## transform_df: function
## super: <ggproto object: Class ScaleDiscrete, Scale, gg>
mainland<- land %>%
select(year, region, GDP) %>%
group_by(region, year) %>%
summarize(GDP = sum(GDP, na.rm = TRUE))
## `summarise()` regrouping output by 'region' (override with `.groups` argument)
mainland
## # A tibble: 175 x 3
## # Groups: region [7]
## region year GDP
## <chr> <dbl> <dbl>
## 1 East Asia & Pacific 1990 5.41
## 2 East Asia & Pacific 1991 5.91
## 3 East Asia & Pacific 1992 6.37
## 4 East Asia & Pacific 1993 6.90
## 5 East Asia & Pacific 1994 7.49
## 6 East Asia & Pacific 1995 8.13
## 7 East Asia & Pacific 1996 8.80
## 8 East Asia & Pacific 1997 9.37
## 9 East Asia & Pacific 1998 9.43
## 10 East Asia & Pacific 1999 9.97
## # … with 165 more rows
Continent_Chart <- ggplot(mainland, aes(x = year, y =GDP)) +
xlab("Year") +
ylab("GDP (Trillions)") +
theme_minimal(base_size = 14)
Continent_Chart
Continent_Chart +
geom_line(aes(fill=region)) +
geom_area(aes(fill=region)) +
ggtitle("GDP by Region")
## Warning: Ignoring unknown aesthetics: fill
scale_fill_brewer(palette = "Set2")
## <ggproto object: Class ScaleDiscrete, Scale, gg>
## aesthetics: fill
## axis_order: function
## break_info: function
## break_positions: function
## breaks: waiver
## call: call
## clone: function
## dimension: function
## drop: TRUE
## expand: waiver
## get_breaks: function
## get_breaks_minor: function
## get_labels: function
## get_limits: function
## guide: legend
## is_discrete: function
## is_empty: function
## labels: waiver
## limits: NULL
## make_sec_title: function
## make_title: function
## map: function
## map_df: function
## n.breaks.cache: NULL
## na.translate: TRUE
## na.value: NA
## name: waiver
## palette: function
## palette.cache: NULL
## position: left
## range: <ggproto object: Class RangeDiscrete, Range, gg>
## range: NULL
## reset: function
## train: function
## super: <ggproto object: Class RangeDiscrete, Range, gg>
## rescale: function
## reset: function
## scale_name: brewer
## train: function
## train_df: function
## transform: function
## transform_df: function
## super: <ggproto object: Class ScaleDiscrete, Scale, gg>