\[\Large \text{(Point Estimate)} \pm \text{(Margin of Error)}=\text{(Point Estimate)} \pm \text{(Critical Value)}\cdot \text{(Standard Error)}\]
\[\color{red} {\Huge \hat{p}\pm z^*\cdot \sqrt{\frac{\hat{p}\cdot (1-\hat{p})}{n}}}\]
\[\color{red} {\Huge\bar{x}\pm t^*\cdot \frac{s}{\sqrt{n}}}\]
\[\color{red} {\Huge (\hat{p}_1-\hat{p}_2)\pm z^*\cdot \sqrt{\frac{\hat{p}_1\cdot (1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2\cdot (1-\hat{p}_2)}{n_2}}}\]
\[\color{red} {\Huge(\bar{x}_1-\bar{x}_2)\pm t^*\cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}\]
\[\color{red} {\Huge\text{Test Statistic (t.s.)}=\frac{\text{Point Estimate} - \text{Null Value}}{\text{Standard Error}}}\]
\[\color{red} {\Huge z=\frac{\hat{p} - p_0}{\sqrt{p_0\cdot (1-p_0)/n}}}\]
\[\color{red} {\Huge t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}}\]
\[\color{red} {\Huge z=\frac{\hat{p}_1-\hat{p}_2}{\sqrt{\frac{\hat{p}\cdot (1-\hat{p})}{n_1} + \frac{\hat{p}\cdot (1-\hat{p})}{n_2}}}}\] where \(\color{red} {\Large \hat{p}=\frac{\text{Total Number of Successes from Both Samples}}{\text{Total Sample Size}}}\), which is called the pooled sample proportion.
\[\color{red} {\Huge t=\frac{\bar{x}_1-\bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}}\]
\[\color{red} {\Huge \chi ^2 = \Sigma \frac{(\text{Observed}-\text{Expected})^2}{\text{Expected}}}\]