summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

a <- 88.83333
s <- 7.167
n <- 20
error <- qnorm(0.975) * s/sqrt(n)
left95 <- a-error
right95 <- a+error
left95
## [1] 85.69231
right95
## [1] 91.97435
library(haven)
PA_Mortality <- read_dta("PA_Mortality.dta")
View(PA_Mortality)

Question 6a

summary(PA_Mortality$povrate , PA_Mortality$cofips)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.04873 0.09667 0.12455 0.12110 0.14199 0.24159
boxplot(PA_Mortality$povrate, PA_Mortality$cofips, main= "County Poverty Rates", xlab="cofips", ylab="povrate", na.rm=T)

## Midterm Question 6c

PA_Mortality1 <- PA_Mortality %>%
  transmute( 
    avemort = ifelse(avemort <=8, 'lowmort', 
                     ifelse(avemort >8, 'himort', NA)),
                       gini = ifelse (gini <= 0.4, 'Equal', 
                                      ifelse(gini > 0.4, 'Unqual', NA)),
    countyfip=cofips
    )

Midterm Question 6d

tab1 <- table(PA_Mortality1$avemort, PA_Mortality1$countyfip)
print(tab1)
##          
##           42001 42003 42005 42007 42009 42011 42013 42015 42017 42019 42021
##   himort      1     1     1     1     0     1     1     1     1     1     1
##   lowmort     0     0     0     0     1     0     0     0     0     0     0
##          
##           42023 42025 42027 42029 42031 42033 42035 42037 42039 42041 42043
##   himort      1     1     0     0     1     1     1     1     1     0     1
##   lowmort     0     0     1     1     0     0     0     0     0     1     0
##          
##           42045 42047 42049 42051 42053 42055 42057 42059 42061 42063 42065
##   himort      1     1     1     1     1     0     1     1     0     1     1
##   lowmort     0     0     0     0     0     1     0     0     1     0     0
##          
##           42067 42069 42071 42073 42075 42077 42079 42081 42083 42085 42087
##   himort      1     1     0     1     0     0     1     1     1     1     1
##   lowmort     0     0     1     0     1     1     0     0     0     0     0
##          
##           42089 42091 42093 42095 42097 42099 42101 42103 42105 42107 42109
##   himort      1     0     1     0     1     1     1     0     1     1     0
##   lowmort     0     1     0     1     0     0     0     1     0     0     1
##          
##           42111 42113 42115 42117 42119 42121 42123 42125 42127 42129 42131
##   himort      1     1     1     1     0     1     1     1     1     1     1
##   lowmort     0     0     0     0     1     0     0     0     0     0     0
##          
##           42133
##   himort      0
##   lowmort     1
tab1a <- round(prop.table(tab1,2), digits = 1)
print(tab1a)
##          
##           42001 42003 42005 42007 42009 42011 42013 42015 42017 42019 42021
##   himort      1     1     1     1     0     1     1     1     1     1     1
##   lowmort     0     0     0     0     1     0     0     0     0     0     0
##          
##           42023 42025 42027 42029 42031 42033 42035 42037 42039 42041 42043
##   himort      1     1     0     0     1     1     1     1     1     0     1
##   lowmort     0     0     1     1     0     0     0     0     0     1     0
##          
##           42045 42047 42049 42051 42053 42055 42057 42059 42061 42063 42065
##   himort      1     1     1     1     1     0     1     1     0     1     1
##   lowmort     0     0     0     0     0     1     0     0     1     0     0
##          
##           42067 42069 42071 42073 42075 42077 42079 42081 42083 42085 42087
##   himort      1     1     0     1     0     0     1     1     1     1     1
##   lowmort     0     0     1     0     1     1     0     0     0     0     0
##          
##           42089 42091 42093 42095 42097 42099 42101 42103 42105 42107 42109
##   himort      1     0     1     0     1     1     1     0     1     1     0
##   lowmort     0     1     0     1     0     0     0     1     0     0     1
##          
##           42111 42113 42115 42117 42119 42121 42123 42125 42127 42129 42131
##   himort      1     1     1     1     0     1     1     1     1     1     1
##   lowmort     0     0     0     0     1     0     0     0     0     0     0
##          
##           42133
##   himort      0
##   lowmort     1
tab2 <- table(PA_Mortality1$gini, PA_Mortality1$countyfip)
print(tab2)
##         
##          42001 42003 42005 42007 42009 42011 42013 42015 42017 42019 42021
##   Equal      1     0     0     0     0     0     0     0     0     0     0
##   Unqual     0     1     1     1     1     1     1     1     1     1     1
##         
##          42023 42025 42027 42029 42031 42033 42035 42037 42039 42041 42043
##   Equal      0     1     0     0     0     0     1     0     0     0     0
##   Unqual     1     0     1     1     1     1     0     1     1     1     1
##         
##          42045 42047 42049 42051 42053 42055 42057 42059 42061 42063 42065
##   Equal      0     1     0     0     0     0     1     0     0     0     0
##   Unqual     1     0     1     1     1     1     0     1     1     1     1
##         
##          42067 42069 42071 42073 42075 42077 42079 42081 42083 42085 42087
##   Equal      1     0     0     0     1     0     0     0     0     0     0
##   Unqual     0     1     1     1     0     1     1     1     1     1     1
##         
##          42089 42091 42093 42095 42097 42099 42101 42103 42105 42107 42109
##   Equal      1     0     0     0     0     1     0     0     0     0     0
##   Unqual     0     1     1     1     1     0     1     1     1     1     1
##         
##          42111 42113 42115 42117 42119 42121 42123 42125 42127 42129 42131
##   Equal      0     0     0     0     0     0     0     0     0     0     1
##   Unqual     1     1     1     1     1     1     1     1     1     1     0
##         
##          42133
##   Equal      1
##   Unqual     0
tab2a <- round(prop.table(tab2,2), digits = 1)
print(tab2a)
##         
##          42001 42003 42005 42007 42009 42011 42013 42015 42017 42019 42021
##   Equal      1     0     0     0     0     0     0     0     0     0     0
##   Unqual     0     1     1     1     1     1     1     1     1     1     1
##         
##          42023 42025 42027 42029 42031 42033 42035 42037 42039 42041 42043
##   Equal      0     1     0     0     0     0     1     0     0     0     0
##   Unqual     1     0     1     1     1     1     0     1     1     1     1
##         
##          42045 42047 42049 42051 42053 42055 42057 42059 42061 42063 42065
##   Equal      0     1     0     0     0     0     1     0     0     0     0
##   Unqual     1     0     1     1     1     1     0     1     1     1     1
##         
##          42067 42069 42071 42073 42075 42077 42079 42081 42083 42085 42087
##   Equal      1     0     0     0     1     0     0     0     0     0     0
##   Unqual     0     1     1     1     0     1     1     1     1     1     1
##         
##          42089 42091 42093 42095 42097 42099 42101 42103 42105 42107 42109
##   Equal      1     0     0     0     0     1     0     0     0     0     0
##   Unqual     0     1     1     1     1     0     1     1     1     1     1
##         
##          42111 42113 42115 42117 42119 42121 42123 42125 42127 42129 42131
##   Equal      0     0     0     0     0     0     0     0     0     0     1
##   Unqual     1     1     1     1     1     1     1     1     1     1     0
##         
##          42133
##   Equal      1
##   Unqual     0

Midterm Question 6e

PA_Mortality2 <- PA_Mortality %>%
  transmute( 
    avemort = ifelse(avemort <=8, 'lowmort', 
                     ifelse(avemort >8, 'himort', NA)),
    gini=gini
    

        )
PA_Mortality2%>%
  group_by(avemort) %>%
  summarize(mean =mean(gini, na.rm=T), sd=sd(gini, na.rm=T))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 3
##   avemort  mean     sd
##   <chr>   <dbl>  <dbl>
## 1 himort  0.420 0.0234
## 2 lowmort 0.422 0.0234

Question 6e High Mort

a <- 0.4200577
s <- 0.02342817
n <- 67

 a + 66 * s/sqrt(n)
## [1] 0.6089633

Question 6e Low Mort

a <- 0.4218000
s <- 0.02341612
n <- 67
error <-qt(0.975, df=n-1)*s/sqrt(n)
tleft <- a-error
tright <- a+error
tleft
## [1] 0.4160884
tright
## [1] 0.4275116
a + 66 * s/sqrt(n)
## [1] 0.6106085