The Data and Wrangling
omx <- read.csv("C:/Users/emretoros/Desktop/omx.csv", encoding="UTF-8")
#The Analysis
EDA
options(scipen=10000)
#solvency
omx %>%
ggplot(aes(x= solvency, y= tobins_q)) +
stat_summary( fun.data=mean_cl_normal, width=0.1, conf.int=0.95, fill="lightblue") +
stat_summary(geom="line", fun.y=mean, linetype="dashed")+
stat_summary(geom="point", fun.y=mean, color="red") +
labs(y = "Tobins Q", x= "Solvency ")

#roa
omx %>%
ggplot(aes(x= roa, y= tobins_q)) +
stat_summary( fun.data=mean_cl_normal, width=0.1, conf.int=0.95, fill="lightblue") +
stat_summary(geom="line", fun.y=mean, linetype="dashed")+
stat_summary(geom="point", fun.y=mean, color="red") +
labs(y = "Tobins Q", x= "Roa ")

#toplam varlık
omx %>%
ggplot(aes(x= log10(toplam_varlik), y= tobins_q)) +
stat_summary( fun.data=mean_cl_normal, width=0.1, conf.int=0.95, fill="lightblue") +
stat_summary(geom="line", fun.y=mean, linetype="dashed")+
stat_summary(geom="point", fun.y=mean, color="red") +
labs(y = "Tobins Q", x= "Toplam Varlık(log10)")

DV: Tobins q Linear Models
model1 <- lm(tobins_q ~ solvency, data=omx)
model2 <- lm(tobins_q ~ roa + log10(toplam_varlik), data=omx)
tab_model(model1 )
|
|
tobins q
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.98
|
0.94 – 1.02
|
<0.001
|
|
solvency
|
-0.01
|
-0.01 – -0.01
|
<0.001
|
|
Observations
|
110
|
|
R2 / R2 adjusted
|
0.814 / 0.813
|
tab_model(model2, show.std = TRUE)
|
|
tobins q
|
|
Predictors
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
std. p
|
|
(Intercept)
|
1.04
|
0.25
|
0.74 – 1.34
|
0.03 – 0.47
|
<0.001
|
0.026
|
|
roa
|
-0.01
|
-0.63
|
-0.02 – -0.01
|
-0.78 – -0.47
|
<0.001
|
<0.001
|
|
toplam_varlik [log10]
|
-0.06
|
-1.29
|
-0.11 – -0.02
|
-2.12 – -0.47
|
0.006
|
0.002
|
|
Observations
|
110
|
|
R2 / R2 adjusted
|
0.370 / 0.358
|
tab_model(model1, model2, show.std = T)
|
|
tobins q
|
tobins q
|
|
Predictors
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
std. p
|
|
(Intercept)
|
0.98
|
-0.00
|
0.94 – 1.02
|
-0.08 – 0.08
|
<0.001
|
1.04
|
0.25
|
0.74 – 1.34
|
0.03 – 0.47
|
<0.001
|
0.026
|
|
solvency
|
-0.01
|
-0.90
|
-0.01 – -0.01
|
-0.98 – -0.82
|
<0.001
|
|
|
|
|
|
|
|
roa
|
|
|
|
|
|
-0.01
|
-0.63
|
-0.02 – -0.01
|
-0.78 – -0.47
|
<0.001
|
<0.001
|
|
toplam_varlik [log10]
|
|
|
|
|
|
-0.06
|
-1.29
|
-0.11 – -0.02
|
-2.12 – -0.47
|
0.006
|
0.002
|
|
Observations
|
110
|
110
|
|
R2 / R2 adjusted
|
0.814 / 0.813
|
0.370 / 0.358
|
Women Models
l_mod2 <- glm(tobins_q ~ roa + solvency + log10(toplam_varlik) + denetim_komitesi_kadin_sayi + denetim_komitesi_kadin_baskan + denetim_top_say, data= omx)
tab_model(l_mod2)
|
|
tobins q
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
0.90
|
0.74 – 1.07
|
<0.001
|
|
roa
|
-0.00
|
-0.00 – 0.00
|
0.846
|
|
solvency
|
-0.01
|
-0.01 – -0.01
|
<0.001
|
|
toplam_varlik [log10]
|
0.03
|
0.00 – 0.06
|
0.034
|
|
denetim_komitesi_kadin_sayi
|
-0.02
|
-0.04 – -0.01
|
0.003
|
|
denetim_komitesi_kadin_baskan
|
0.01
|
-0.01 – 0.04
|
0.358
|
|
denetim_top_say
|
-0.01
|
-0.02 – -0.00
|
0.004
|
|
Observations
|
99
|
|
R2 Nagelkerke
|
0.857
|
plot_model(l_mod2, type = "est", show.values = TRUE)

plot_model(l_mod2, type = "pred")
## $roa

##
## $solvency

##
## $toplam_varlik

##
## $denetim_komitesi_kadin_sayi

##
## $denetim_komitesi_kadin_baskan

##
## $denetim_top_say

DV: Roa Linear Models
model1 <- lm(roa ~ solvency, data=omx)
model2 <- lm(roa ~ tobins_q + log10(toplam_varlik), data=omx)
tab_model(model1 )
|
|
roa
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
-7.27
|
-11.07 – -3.48
|
<0.001
|
|
solvency
|
0.30
|
0.22 – 0.37
|
<0.001
|
|
Observations
|
110
|
|
R2 / R2 adjusted
|
0.343 / 0.337
|
tab_model(model2, show.std = TRUE)
|
|
roa
|
|
Predictors
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
std. p
|
|
(Intercept)
|
49.55
|
0.30
|
35.31 – 63.79
|
0.10 – 0.51
|
<0.001
|
0.005
|
|
tobins_q
|
-28.74
|
-0.60
|
-35.96 – -21.52
|
-0.74 – -0.45
|
<0.001
|
<0.001
|
|
toplam_varlik [log10]
|
-4.05
|
-1.59
|
-6.05 – -2.05
|
-2.37 – -0.80
|
<0.001
|
<0.001
|
|
Observations
|
110
|
|
R2 / R2 adjusted
|
0.412 / 0.402
|
tab_model(model1, model2, show.std = T)
|
|
roa
|
roa
|
|
Predictors
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
std. p
|
|
(Intercept)
|
-7.27
|
0.00
|
-11.07 – -3.48
|
-0.15 – 0.15
|
<0.001
|
49.55
|
0.30
|
35.31 – 63.79
|
0.10 – 0.51
|
<0.001
|
0.005
|
|
solvency
|
0.30
|
0.59
|
0.22 – 0.37
|
0.43 – 0.74
|
<0.001
|
|
|
|
|
|
|
|
tobins_q
|
|
|
|
|
|
-28.74
|
-0.60
|
-35.96 – -21.52
|
-0.74 – -0.45
|
<0.001
|
<0.001
|
|
toplam_varlik [log10]
|
|
|
|
|
|
-4.05
|
-1.59
|
-6.05 – -2.05
|
-2.37 – -0.80
|
<0.001
|
<0.001
|
|
Observations
|
110
|
110
|
|
R2 / R2 adjusted
|
0.343 / 0.337
|
0.412 / 0.402
|
Women Models
l_mod2 <- glm(roa ~ tobins_q + solvency + log10(toplam_varlik) + denetim_komitesi_kadin_sayi + denetim_komitesi_kadin_baskan + denetim_top_say, data= omx)
tab_model(l_mod2)
|
|
roa
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
24.76
|
3.26 – 46.25
|
0.026
|
|
tobins_q
|
-1.81
|
-20.04 – 16.42
|
0.846
|
|
solvency
|
0.29
|
0.10 – 0.48
|
0.004
|
|
toplam_varlik [log10]
|
-4.52
|
-6.89 – -2.14
|
<0.001
|
|
denetim_komitesi_kadin_sayi
|
1.75
|
0.34 – 3.15
|
0.017
|
|
denetim_komitesi_kadin_baskan
|
-2.69
|
-4.81 – -0.57
|
0.015
|
|
denetim_top_say
|
-0.42
|
-1.23 – 0.40
|
0.318
|
|
Observations
|
99
|
|
R2 Nagelkerke
|
1.000
|
plot_model(l_mod2, type = "est", show.values = TRUE)

plot_model(l_mod2, type = "pred")
## $tobins_q

##
## $solvency

##
## $toplam_varlik

##
## $denetim_komitesi_kadin_sayi

##
## $denetim_komitesi_kadin_baskan

##
## $denetim_top_say
