Загрузка данных

Effect size

Предполагается, что подписи на графике в виде:
m.Aranei_4
m.Aranei_3.HP
m.Aranei_2.MP
m.Aranei_1.HP

будут переделаны в кореле в:
Aranei
UP
MP
UP

Столбец 1

taxa1 <- colnames(d1)[5:ncol(d1)]
res <- data.frame(taxa = character(), zone = character(), ratio = character(),
                  rr = numeric(), sd = numeric())
for(i in taxa1) { 
  df <- select(d1, zone, biotop, eval(i)) %>% rename(val = eval(i))
  res <- rbind(res, 
    rbind(rep(NA, 2), 
      lrr(filter(df, zone == "1.HP", biotop == "RZ")$val, filter(df, zone == "1.HP", biotop == "F")$val),
      lrr(filter(df, zone == "2.MP", biotop == "RZ")$val, filter(df, zone == "2.MP", biotop == "F")$val),
      lrr(filter(df, zone == "3.UP", biotop == "RZ")$val, filter(df, zone == "3.UP", biotop == "F")$val)) %>% 
    cbind(taxa = i, zone = c("4", "1.HP", "2.MP", "3.UP"), ratio = "RZ/F", .)
  )
}
res <- res %>% 
  mutate(taxa = paste0(taxa, "_", zone))
ggplot(res, aes(x = taxa, y = logRR.d, ymin = logRR.d-sdRR.d, ymax = logRR.d+sdRR.d, color = zone)) + 
    geom_vline(xintercept = res$taxa[-seq(1,60, by = 4)], color = "grey", alpha = 0.5) + 
    geom_hline(yintercept = -1:5, color = "grey", alpha = 0.5) + 
    geom_hline(yintercept = 0) + 
    geom_pointrange() + 
    coord_flip() + 
    theme_bw() + 
    theme(legend.position = "none", panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
    labs(x = "", y = "") + 
    scale_color_manual(values = c("red", "darkorange3", "darkgreen", "white")) + 
    scale_y_continuous(breaks = -1:5) # %>% ggsave()

Столбцы 2&3

res <- data.frame(taxa = character(), zone = character(), ratio = character(),
                  rr = numeric(), sd = numeric())
for(i in taxa1) { 
  df <- select(d1, zone, biotop, eval(i)) %>% rename(val = eval(i))
  res <- rbind(res, cbind(taxa = i, zone = rep(c("F", "RZ"), 2), ratio = rep(c("MP/UP", "HP/UP"), each = 2), 
               rbind(# 
                 lrr(filter(df, biotop == "F", zone == "2.MP")$val,  filter(df, biotop == "F", zone == "3.UP")$val),
                 lrr(filter(df, biotop == "RZ",zone == "2.MP")$val,  filter(df, biotop == "RZ",zone == "3.UP")$val),
                 lrr(filter(df, biotop == "F", zone == "1.HP")$val,  filter(df, biotop == "F", zone == "3.UP")$val),
                 lrr(filter(df, biotop == "RZ",zone == "1.HP")$val,  filter(df, biotop == "RZ",zone == "3.UP")$val) 
              ))
  )
}
res <- res %>% 
    as_tibble() %>% 
    rbind(cbind(taxa = taxa1, zone = "Z", ratio = rep(c("MP/UP", "HP/UP"), 
           length(taxa1)), logRR.d = NA, sdRR.d = NA)) %>% 
  mutate(taxa = case_when(zone == "RZ" ~ paste0(taxa, "_a.", zone),zone != "RZ" ~ paste0(taxa, "_b.", zone)),
           Axis = case_when(zone == "Z" ~ substr(taxa, 3, nchar(taxa) - 2), 
                            zone != "Z" ~ zone)) %>% 
  mutate(logRR.d = as.numeric(logRR.d), sdRR.d = as.numeric(sdRR.d)) %>% 
  arrange(taxa)
ggplot(res, aes(x = taxa, y = logRR.d, ymin = logRR.d-sdRR.d, ymax = logRR.d+sdRR.d, color = zone)) + 
    geom_hline(yintercept = -7:1, color = "grey", alpha = 0.5) +
    geom_hline(yintercept = 0) +   
    geom_vline(xintercept = pull(filter(res, substr(taxa, nchar(taxa) - 1, nchar(taxa)) != ".Z"), taxa),  
               color = "grey", alpha = 0.5) +
    geom_pointrange(size = 0.5) + 
    coord_flip() + 
    theme_bw() + 
    theme(legend.position = "none", panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
    labs(x = "", y = "")  + 
    facet_wrap(~ratio) +
    scale_y_continuous(breaks = -7:1) +
    scale_color_manual(values = c("forestgreen", "dodgerblue3", "yellow"))

ANOVA(ln(Abundance))

Обозначения:
taxa - таксон;
fon_F, fon_RZ, buf_F, buf_RZ, imp_F, imp_RZ - средние значения обилия (или его логарифма) ± его стандартное отклонение;
Z.F - F-статистика для изменчивости, определяемой зоной, Z.pval - исходное p-value, Z.p.adj - скорректированное методом Беньямини-Йекутиели p-value, аналогично для B (биотоп) и ZB (взаимодействие факторов);
W - значение статистики критерия Шапиро-Вилка, w.pval - p-value для этого критерия (Н0: распределение не отличается от нормального)

Tukey

taxa2 <- unique(d2$taxa) 
rs.a <- data.frame(taxa = NA, fct = NA, f = NA, pval = NA, W = NA, wp = NA)
rs.g <- data.frame(taxa = NA, GR = NA, mn = NA, sd = NA, gr = NA)
for(i in taxa2) { 
  df <- filter(d2, taxa == i)
  fit <- lm(logx ~ zone * biotop, data = df)
  rs.a <- cbind(taxa = i, fct = rownames(anova(fit))[1:3], 
      slice(select(as.data.frame(anova(fit)), 4, 5), 1:3), 
      W = shapiro.test(fit$residuals)$statistic, 
      wp = shapiro.test(fit$residuals)$p.value) %>% 
    rename(f = `F value`, pval = `Pr(>F)`) %>% 
    rbind(rs.a, .)
  fit <- agricolae::HSD.test(aov(fit), c("zone", "biotop"), console=F)
  fit <- left_join(cbind(fct = rownames(fit$means), fit$means), 
                   cbind(fct = rownames(fit$groups), fit$groups), 
                   by = "fct") %>% 
    transmute(taxa = i, GR = fct, mn = round(logx.x), sd = round(std), gr = groups)
  rs.g <- rbind(rs.g, fit)
}
rs.g <- rs.g %>% 
  slice(2:nrow(rs.g)) %>% 
  transmute(taxa = taxa, GR = GR, tuckey = paste0(mn, " ± ", sd, " (", gr, ")")) %>% 
  pivot_wider(names_from = GR, values_from = tuckey)
rs.w <- rs.a %>% 
  slice(2:nrow(rs.a)) %>% 
  transmute(taxa = taxa, W = round(W, 2), wpval = round(wp, 3)) %>% 
  distinct()
rs.a <- rs.a %>% 
  slice(2:nrow(rs.a)) %>% 
  select(-W, -wp) %>% 
  mutate(f = round(f, 1), pval = round(pval, 3)) %>% 
  pivot_longer(names_to = "tp", values_to = "val", -c("taxa", "fct")) %>% 
  transmute(taxa = taxa, val = val, ftp = paste0(fct, "..", tp)) %>% 
  pivot_wider(names_from = ftp, values_from = val)
log.x <- rs.g %>% 
  left_join(rs.a, by = "taxa") %>% 
  mutate(Z.p.adj = round(p.adjust(zone..pval,   n = 27, method = "BY"), 3), 
         B.p.adj = round(p.adjust(biotop..pval, n = 27, method = "BY"), 3),
         ZB.p.adj= round(p.adjust(`zone:biotop..pval`, n = 27, method = "BY"), 3)
         ) %>% 
  left_join(rs.w, by = "taxa")
log.x <- select(log.x, taxa, fon_F = "1.fon:F", fon_RZ = "1.fon:RZ", buf_F = "2.buf:F", 
              buf_RZ = "2.buf:RZ", imp_F = "3.imp:F", imp_RZ = "3.imp:RZ", Z.F = "zone..f", 
              Z.pval = "zone..pval", Z.p.adj, B.F = "biotop..f", B.pval = "biotop..pval", B.p.adj, 
              ZB.F =  "zone:biotop..f", ZB.pval = "zone:biotop..pval", ZB.p.adj, W, w.pval = "wpval")
formattable(log.x, list(w.pval = formatter("span",
      style = x ~ style(color = ifelse(x <= 0.05, "red", "grey"))
      )
))
taxa fon_F fon_RZ buf_F buf_RZ imp_F imp_RZ Z.F Z.pval Z.p.adj B.F B.pval B.p.adj ZB.F ZB.pval ZB.p.adj W w.pval
Mermithidae 1 ± 1 (a) 0 ± 1 (ab) -1 ± 1 (bc) 0 ± 0 (a) -2 ± 1 (c) -2 ± 1 (c) 18.3 0.000 0.000 3.3 0.082 0.538 6.0 0.008 0.210 0.95 0.186
Lumbricidae 3 ± 1 (a) 3 ± 0 (a) 0 ± 1 (b) 2 ± 1 (a) -2 ± 1 (c) 1 ± 0 (ab) 27.7 0.000 0.000 38.2 0.000 0.000 4.2 0.026 0.546 0.92 0.026
Lumbricidae, pupa полные 2 ± 1 (ab) 3 ± 1 (a) 1 ± 1 (b) 2 ± 1 (ab) -2 ± 0 (c) 1 ± 0 (ab) 32.1 0.000 0.000 53.4 0.000 0.000 8.8 0.001 0.053 0.93 0.053
Lumbricidae, pupa пустые 3 ± 0 (a) 4 ± 0 (a) 1 ± 1 (b) 3 ± 1 (a) -2 ± 1 (c) 2 ± 1 (ab) 44.3 0.000 0.000 63.1 0.000 0.000 12.7 0.000 0.000 0.96 0.283
Enchytraeidae 3 ± 0 (abc) 4 ± 1 (a) 2 ± 2 (bc) 4 ± 1 (ab) -2 ± 0 (d) 1 ± 1 (c) 46.6 0.000 0.000 33.3 0.000 0.000 1.1 0.344 1.000 0.89 0.004
Aranei 2 ± 0 (ab) 3 ± 0 (ab) 2 ± 1 (b) 3 ± 1 (a) 2 ± 0 (b) 3 ± 0 (a) 0.4 0.690 1.000 24.7 0.000 0.000 1.6 0.229 1.000 0.97 0.497
Opilliones -1 ± 0 (a) -1 ± 0 (a) -1 ± 1 (a) 0 ± 1 (a) -1 ± 1 (a) -1 ± 1 (a) 0.3 0.776 1.000 0.9 0.342 1.000 0.1 0.921 1.000 0.95 0.178
Lithobiidae 2 ± 0 (ab) 2 ± 0 (a) 0 ± 1 (b) 2 ± 0 (ab) -1 ± 1 (c) 1 ± 1 (ab) 16.6 0.000 0.000 31.6 0.000 0.000 3.7 0.040 0.675 0.95 0.177
Geophilidae 2 ± 0 (a) 1 ± 1 (ab) 1 ± 0 (a) 1 ± 0 (ab) 0 ± 1 (bc) -1 ± 1 (c) 21.1 0.000 0.000 5.5 0.028 0.242 0.2 0.856 1.000 0.90 0.009
Diplopoda -2 ± 0 (b) -1 ± 1 (ab) -2 ± 1 (b) 0 ± 1 (a) -2 ± 0 (b) -2 ± 1 (b) 4.6 0.020 0.150 11.8 0.002 0.021 1.5 0.246 1.000 0.92 0.022
Diptera Nematocera, larvae+pupa 3 ± 1 (a) 3 ± 0 (ab) 2 ± 1 (ab) 3 ± 1 (ab) 1 ± 1 (c) 2 ± 1 (bc) 24.8 0.000 0.000 4.5 0.045 0.338 3.1 0.062 0.814 0.93 0.040
Diptera Brachycera, larvae+pupa 2 ± 0 (ab) 2 ± 1 (a) 0 ± 1 (c) 1 ± 1 (bc) 0 ± 1 (c) 1 ± 0 (bc) 13.4 0.000 0.000 1.4 0.250 1.000 0.0 0.975 1.000 0.95 0.156
Hemiptera phytophaga, imago+larvae -1 ± 1 (a) 0 ± 0 (a) -1 ± 1 (a) -1 ± 1 (a) -1 ± 0 (a) -1 ± 1 (a) 1.3 0.302 1.000 0.0 0.849 1.000 1.1 0.340 1.000 0.96 0.384
Homoptera Coccodea, imago+larvae 0 ± 1 (a) 0 ± 2 (a) -1 ± 1 (a) -1 ± 0 (a) 0 ± 2 (a) 0 ± 2 (a) 1.0 0.368 1.000 0.1 0.724 1.000 0.6 0.558 1.000 0.96 0.272
Lepidoptera, larvae+pupa -1 ± 1 (a) -1 ± 1 (a) -1 ± 0 (a) 0 ± 1 (a) -1 ± 1 (a) -1 ± 1 (a) 0.9 0.406 1.000 1.2 0.275 1.000 0.0 0.959 1.000 0.94 0.068
Hymenoptera phytophaga, larvae+pupa -2 ± 1 (a) -1 ± 1 (a) -2 ± 1 (a) -1 ± 1 (a) -2 ± 0 (a) -2 ± 1 (a) 1.7 0.197 1.000 1.0 0.325 1.000 0.2 0.807 1.000 0.96 0.239
Carabidae, imago -1 ± 0 (a) 0 ± 1 (a) -1 ± 1 (a) -1 ± 1 (a) -1 ± 0 (a) -2 ± 1 (a) 1.9 0.174 1.000 1.4 0.256 1.000 2.8 0.084 0.883 0.96 0.252
Carabidae, larvae -1 ± 0 (a) -1 ± 1 (a) -1 ± 1 (a) -2 ± 1 (a) -2 ± 1 (a) -1 ± 1 (a) 0.8 0.474 1.000 0.0 0.912 1.000 3.5 0.045 0.675 0.96 0.342
Staphylinidae, imago 2 ± 0 (a) 2 ± 0 (a) 2 ± 1 (a) 1 ± 0 (a) 2 ± 0 (a) 2 ± 0 (a) 0.3 0.726 1.000 0.6 0.457 1.000 1.3 0.301 1.000 0.94 0.117
Staphylinidae, larvae+pupa 0 ± 1 (a) 0 ± 1 (a) 0 ± 1 (a) 0 ± 0 (a) 0 ± 1 (a) 0 ± 1 (a) 0.2 0.804 1.000 0.3 0.592 1.000 0.0 0.956 1.000 0.91 0.013
Cantharidae, larvae 0 ± 0 (a) 1 ± 1 (a) -1 ± 1 (a) 0 ± 1 (a) -1 ± 1 (a) 0 ± 1 (a) 1.7 0.211 1.000 3.5 0.076 0.532 0.2 0.808 1.000 0.96 0.244
Elateridae, larvae+pupa 1 ± 0 (a) 0 ± 1 (a) 2 ± 1 (a) 1 ± 1 (a) 1 ± 1 (a) 1 ± 1 (a) 0.7 0.503 1.000 6.1 0.021 0.201 0.5 0.604 1.000 0.93 0.054
Curculionidae, larvae+pupa 0 ± 1 (a) -2 ± 0 (b) -2 ± 0 (b) -2 ± 0 (b) -1 ± 1 (b) -2 ± 1 (b) 5.5 0.011 0.089 11.7 0.002 0.021 7.6 0.003 0.105 0.88 0.002
Coleoptera varia2, imago 0 ± 0 (a) 0 ± 1 (a) 0 ± 0 (a) 0 ± 1 (a) -1 ± 1 (a) 0 ± 0 (a) 0.0 0.956 1.000 5.3 0.030 0.242 0.4 0.653 1.000 0.95 0.173
Coleoptera varia2, larvae+pupa 1 ± 0 (ab) 1 ± 0 (ab) 1 ± 0 (a) 1 ± 0 (ab) 0 ± 1 (b) 1 ± 1 (ab) 6.8 0.005 0.044 0.1 0.805 1.000 2.1 0.144 1.000 0.94 0.098
Mollusca, все 3 ± 0 (a) 4 ± 0 (a) 1 ± 0 (bc) 3 ± 0 (a) 0 ± 2 (c) 3 ± 1 (ab) 15.7 0.000 0.000 45.9 0.000 0.000 2.8 0.078 0.883 0.93 0.043
All 5 ± 0 (a) 6 ± 0 (a) 4 ± 0 (b) 5 ± 0 (a) 3 ± 0 (c) 4 ± 0 (b) 57.5 0.000 0.000 74.1 0.000 0.000 2.3 0.125 1.000 0.98 0.852

Scheffe

taxa2 <- unique(d2$taxa) 
rs.a <- data.frame(taxa = NA, fct = NA, f = NA, pval = NA, W = NA, wp = NA)
rs.g <- data.frame(taxa = NA, GR = NA, mn = NA, sd = NA, gr = NA)
for(i in taxa2) { 
  df <- filter(d2, taxa == i)
  fit <- lm(logx ~ zone * biotop, data = df)
  rs.a <- cbind(taxa = i, fct = rownames(anova(fit))[1:3], 
      slice(select(as.data.frame(anova(fit)), 4, 5), 1:3), 
      W = shapiro.test(fit$residuals)$statistic, 
      wp = shapiro.test(fit$residuals)$p.value) %>% 
    rename(f = `F value`, pval = `Pr(>F)`) %>% 
    rbind(rs.a, .)
  fit <- agricolae::scheffe.test(aov(fit), c("zone", "biotop"), console=F)
  fit <- left_join(cbind(fct = rownames(fit$means), fit$means), 
                   cbind(fct = rownames(fit$groups), fit$groups), 
                   by = "fct") %>% 
    transmute(taxa = i, GR = fct, mn = round(logx.x), sd = round(std), gr = groups)
  rs.g <- rbind(rs.g, fit)
}
rs.g <- rs.g %>% 
  slice(2:nrow(rs.g)) %>% 
  transmute(taxa = taxa, GR = GR, tuckey = paste0(mn, " ± ", sd, " (", gr, ")")) %>% 
  pivot_wider(names_from = GR, values_from = tuckey)
rs.w <- rs.a %>% 
  slice(2:nrow(rs.a)) %>% 
  transmute(taxa = taxa, W = round(W, 2), wpval = round(wp, 3)) %>% 
  distinct()
rs.a <- rs.a %>% 
  slice(2:nrow(rs.a)) %>% 
  select(-W, -wp) %>% 
  mutate(f = round(f, 1), pval = round(pval, 3)) %>% 
  pivot_longer(names_to = "tp", values_to = "val", -c("taxa", "fct")) %>% 
  transmute(taxa = taxa, val = val, ftp = paste0(fct, "..", tp)) %>% 
  pivot_wider(names_from = ftp, values_from = val)
log.x <- rs.g %>% 
  left_join(rs.a, by = "taxa") %>% 
  mutate(Z.p.adj = round(p.adjust(zone..pval,   n = 27, method = "BY"), 3), 
         B.p.adj = round(p.adjust(biotop..pval, n = 27, method = "BY"), 3),
         ZB.p.adj= round(p.adjust(`zone:biotop..pval`, n = 27, method = "BY"), 3)
         ) %>% 
  left_join(rs.w, by = "taxa")
log.x <- select(log.x, taxa, fon_F = "1.fon:F", fon_RZ = "1.fon:RZ", buf_F = "2.buf:F", 
              buf_RZ = "2.buf:RZ", imp_F = "3.imp:F", imp_RZ = "3.imp:RZ", Z.F = "zone..f", 
              Z.pval = "zone..pval", Z.p.adj, B.F = "biotop..f", B.pval = "biotop..pval", B.p.adj, 
              ZB.F =  "zone:biotop..f", ZB.pval = "zone:biotop..pval", ZB.p.adj, W, w.pval = "wpval")
formattable(log.x, list(w.pval = formatter("span",
      style = x ~ style(color = ifelse(x <= 0.05, "red", "grey"))
      )
))
taxa fon_F fon_RZ buf_F buf_RZ imp_F imp_RZ Z.F Z.pval Z.p.adj B.F B.pval B.p.adj ZB.F ZB.pval ZB.p.adj W w.pval
Mermithidae 1 ± 1 (a) 0 ± 1 (ab) -1 ± 1 (abc) 0 ± 0 (a) -2 ± 1 (bc) -2 ± 1 (c) 18.3 0.000 0.000 3.3 0.082 0.538 6.0 0.008 0.210 0.95 0.186
Lumbricidae 3 ± 1 (a) 3 ± 0 (a) 0 ± 1 (b) 2 ± 1 (a) -2 ± 1 (c) 1 ± 0 (ab) 27.7 0.000 0.000 38.2 0.000 0.000 4.2 0.026 0.546 0.92 0.026
Lumbricidae, pupa полные 2 ± 1 (a) 3 ± 1 (a) 1 ± 1 (a) 2 ± 1 (a) -2 ± 0 (b) 1 ± 0 (a) 32.1 0.000 0.000 53.4 0.000 0.000 8.8 0.001 0.053 0.93 0.053
Lumbricidae, pupa пустые 3 ± 0 (ab) 4 ± 0 (a) 1 ± 1 (b) 3 ± 1 (ab) -2 ± 1 (c) 2 ± 1 (ab) 44.3 0.000 0.000 63.1 0.000 0.000 12.7 0.000 0.000 0.96 0.283
Enchytraeidae 3 ± 0 (ab) 4 ± 1 (a) 2 ± 2 (ab) 4 ± 1 (a) -2 ± 0 (c) 1 ± 1 (b) 46.6 0.000 0.000 33.3 0.000 0.000 1.1 0.344 1.000 0.89 0.004
Aranei 2 ± 0 (ab) 3 ± 0 (ab) 2 ± 1 (b) 3 ± 1 (a) 2 ± 0 (ab) 3 ± 0 (a) 0.4 0.690 1.000 24.7 0.000 0.000 1.6 0.229 1.000 0.97 0.497
Opilliones -1 ± 0 (a) -1 ± 0 (a) -1 ± 1 (a) 0 ± 1 (a) -1 ± 1 (a) -1 ± 1 (a) 0.3 0.776 1.000 0.9 0.342 1.000 0.1 0.921 1.000 0.95 0.178
Lithobiidae 2 ± 0 (a) 2 ± 0 (a) 0 ± 1 (ab) 2 ± 0 (a) -1 ± 1 (b) 1 ± 1 (a) 16.6 0.000 0.000 31.6 0.000 0.000 3.7 0.040 0.675 0.95 0.177
Geophilidae 2 ± 0 (a) 1 ± 1 (ab) 1 ± 0 (a) 1 ± 0 (ab) 0 ± 1 (b) -1 ± 1 (b) 21.1 0.000 0.000 5.5 0.028 0.242 0.2 0.856 1.000 0.90 0.009
Diplopoda -2 ± 0 (ab) -1 ± 1 (ab) -2 ± 1 (ab) 0 ± 1 (a) -2 ± 0 (b) -2 ± 1 (ab) 4.6 0.020 0.150 11.8 0.002 0.021 1.5 0.246 1.000 0.92 0.022
Diptera Nematocera, larvae+pupa 3 ± 1 (a) 3 ± 0 (ab) 2 ± 1 (ab) 3 ± 1 (ab) 1 ± 1 (c) 2 ± 1 (bc) 24.8 0.000 0.000 4.5 0.045 0.338 3.1 0.062 0.814 0.93 0.040
Diptera Brachycera, larvae+pupa 2 ± 0 (ab) 2 ± 1 (a) 0 ± 1 (b) 1 ± 1 (ab) 0 ± 1 (b) 1 ± 0 (ab) 13.4 0.000 0.000 1.4 0.250 1.000 0.0 0.975 1.000 0.95 0.156
Hemiptera phytophaga, imago+larvae -1 ± 1 (a) 0 ± 0 (a) -1 ± 1 (a) -1 ± 1 (a) -1 ± 0 (a) -1 ± 1 (a) 1.3 0.302 1.000 0.0 0.849 1.000 1.1 0.340 1.000 0.96 0.384
Homoptera Coccodea, imago+larvae 0 ± 1 (a) 0 ± 2 (a) -1 ± 1 (a) -1 ± 0 (a) 0 ± 2 (a) 0 ± 2 (a) 1.0 0.368 1.000 0.1 0.724 1.000 0.6 0.558 1.000 0.96 0.272
Lepidoptera, larvae+pupa -1 ± 1 (a) -1 ± 1 (a) -1 ± 0 (a) 0 ± 1 (a) -1 ± 1 (a) -1 ± 1 (a) 0.9 0.406 1.000 1.2 0.275 1.000 0.0 0.959 1.000 0.94 0.068
Hymenoptera phytophaga, larvae+pupa -2 ± 1 (a) -1 ± 1 (a) -2 ± 1 (a) -1 ± 1 (a) -2 ± 0 (a) -2 ± 1 (a) 1.7 0.197 1.000 1.0 0.325 1.000 0.2 0.807 1.000 0.96 0.239
Carabidae, imago -1 ± 0 (a) 0 ± 1 (a) -1 ± 1 (a) -1 ± 1 (a) -1 ± 0 (a) -2 ± 1 (a) 1.9 0.174 1.000 1.4 0.256 1.000 2.8 0.084 0.883 0.96 0.252
Carabidae, larvae -1 ± 0 (a) -1 ± 1 (a) -1 ± 1 (a) -2 ± 1 (a) -2 ± 1 (a) -1 ± 1 (a) 0.8 0.474 1.000 0.0 0.912 1.000 3.5 0.045 0.675 0.96 0.342
Staphylinidae, imago 2 ± 0 (a) 2 ± 0 (a) 2 ± 1 (a) 1 ± 0 (a) 2 ± 0 (a) 2 ± 0 (a) 0.3 0.726 1.000 0.6 0.457 1.000 1.3 0.301 1.000 0.94 0.117
Staphylinidae, larvae+pupa 0 ± 1 (a) 0 ± 1 (a) 0 ± 1 (a) 0 ± 0 (a) 0 ± 1 (a) 0 ± 1 (a) 0.2 0.804 1.000 0.3 0.592 1.000 0.0 0.956 1.000 0.91 0.013
Cantharidae, larvae 0 ± 0 (a) 1 ± 1 (a) -1 ± 1 (a) 0 ± 1 (a) -1 ± 1 (a) 0 ± 1 (a) 1.7 0.211 1.000 3.5 0.076 0.532 0.2 0.808 1.000 0.96 0.244
Elateridae, larvae+pupa 1 ± 0 (a) 0 ± 1 (a) 2 ± 1 (a) 1 ± 1 (a) 1 ± 1 (a) 1 ± 1 (a) 0.7 0.503 1.000 6.1 0.021 0.201 0.5 0.604 1.000 0.93 0.054
Curculionidae, larvae+pupa 0 ± 1 (a) -2 ± 0 (b) -2 ± 0 (b) -2 ± 0 (b) -1 ± 1 (ab) -2 ± 1 (b) 5.5 0.011 0.089 11.7 0.002 0.021 7.6 0.003 0.105 0.88 0.002
Coleoptera varia2, imago 0 ± 0 (a) 0 ± 1 (a) 0 ± 0 (a) 0 ± 1 (a) -1 ± 1 (a) 0 ± 0 (a) 0.0 0.956 1.000 5.3 0.030 0.242 0.4 0.653 1.000 0.95 0.173
Coleoptera varia2, larvae+pupa 1 ± 0 (ab) 1 ± 0 (ab) 1 ± 0 (a) 1 ± 0 (ab) 0 ± 1 (b) 1 ± 1 (ab) 6.8 0.005 0.044 0.1 0.805 1.000 2.1 0.144 1.000 0.94 0.098
Mollusca, все 3 ± 0 (ab) 4 ± 0 (a) 1 ± 0 (bc) 3 ± 0 (a) 0 ± 2 (c) 3 ± 1 (ab) 15.7 0.000 0.000 45.9 0.000 0.000 2.8 0.078 0.883 0.93 0.043
All 5 ± 0 (ab) 6 ± 0 (a) 4 ± 0 (c) 5 ± 0 (ab) 3 ± 0 (d) 4 ± 0 (bc) 57.5 0.000 0.000 74.1 0.000 0.000 2.3 0.125 1.000 0.98 0.852