
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Warning: package 'ggthemes' was built under R version 3.6.3
Exercise
Exercise 1
Please work out in R by doing a chi-squared test on the treatment (X) and improvement (Y) columns in treatment.csv.
We now have a chi-squared value of 5.5569 and we get a p-Value less than the significance level of 0.05 which is 0.01841.
Exercise 2
Find out if the cyl
and carb
variables in mtcars dataset are dependent or not.
##
## 4 6 8
## 1 5 2 0
## 2 6 0 4
## 3 0 0 3
## 4 0 4 6
## 6 0 1 0
## 8 0 0 1
## Warning in chisq.test(mtcars$carb, mtcars$cyl, correct = FALSE): Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: mtcars$carb and mtcars$cyl
## X-squared = 24.389, df = 10, p-value = 0.006632
We now have a high chi-squared value and a p-value of less that 0.05 significance level. So we reject the null hypothesis and conclude that carb
and cyl
have a significant relationship which means they are independent.
Exercise 3
256 visual artists were surveyed to find out their zodiac sign. The results were: Aries (29), Taurus (24), Gemini (22), Cancer (19), Leo (21), Virgo (18), Libra (19), Scorpio (20), Sagittarius (23), Capricorn (18), Aquarius (20), Pisces (23). Test the hypothesis that zodiac signs are evenly distributed across visual artists. (Reference)
# Here we input/make the data as a data frame
Births <-c(29,24,22,19,21,18,19,20,23,18,20,23)
# The Simple Method
chisq.test(Births)
##
## Chi-squared test for given probabilities
##
## data: Births
## X-squared = 5.0938, df = 11, p-value = 0.9265
# Manual Method
n<-256
expected <- c(1/12) * n
alpha <- .05
r <- c(1 , 2 , 3, 4 , 5 , 6 , 7, 8 , 9 , 10 , 11 , 12)
df <- 12 - 1
(chisq <- sum((Births - expected)^2 / expected))
## [1] 5.09375
## [1] 0.9265414
Both methods shows that now we have low chi-square value and a p-value more than 0.05 significance level, so we accept the null hypothesis which means all the zodiac signs distributed evenly across visual artists.
LS0tDQp0aXRsZTogIkxhYjY6IEdvb2RuZXNzIG9mIEZpdCINCmF1dGhvcjogIlllaGV6a2llbCINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KICAgIHRoZW1lOiBzcGFjZWxhYg0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KLS0tDQoNCmBgYHtyIExvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnNDAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJodHRwczovL2dpdGh1Yi5jb20vQmFrdGktU2lyZWdhci9pbWFnZXMvYmxvYi9tYXN0ZXIvbG9nby5wbmc/cmF3PXRydWUiKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KHRpZHlyKQ0KbGlicmFyeShnZ3RoZW1lcykNCmBgYA0KDQojIEV4ZXJjaXNlDQojIyBFeGVyY2lzZSAxDQpQbGVhc2Ugd29yayBvdXQgaW4gUiBieSBkb2luZyBhIGNoaS1zcXVhcmVkIHRlc3Qgb24gdGhlIHRyZWF0bWVudCAoWCkgYW5kIGltcHJvdmVtZW50IChZKSBjb2x1bW5zIGluIFt0cmVhdG1lbnQuY3N2XShodHRwczovL2dpdGh1Yi5jb20vQmFrdGktU2lyZWdhci9kYXRhc2V0L2Jsb2IvbWFzdGVyL3RyZWF0bWVudC5jc3YpLg0KDQoNCldlIG5vdyBoYXZlIGEgY2hpLXNxdWFyZWQgdmFsdWUgb2YgNS41NTY5IGFuZCB3ZSBnZXQgYSBwLVZhbHVlIGxlc3MgdGhhbiB0aGUgc2lnbmlmaWNhbmNlIGxldmVsIG9mIDAuMDUgd2hpY2ggaXMgMC4wMTg0MS4gDQoNCg0KIyMgRXhlcmNpc2UgMg0KRmluZCBvdXQgaWYgdGhlIGBjeWxgIGFuZCBgY2FyYmAgdmFyaWFibGVzIGluIG10Y2FycyBkYXRhc2V0IGFyZSBkZXBlbmRlbnQgb3Igbm90Lg0KDQpgYGB7cn0NCmRhdGEobXRjYXJzKQ0KdGFibGUobXRjYXJzJGNhcmIsIG10Y2FycyRjeWwpDQoNCiNjaGktc3EgdGVzDQpjaGlzcS50ZXN0KG10Y2FycyRjYXJiLCBtdGNhcnMkY3lsLCBjb3JyZWN0ID0gRkFMU0UpDQpgYGANCldlIG5vdyBoYXZlIGEgaGlnaCBjaGktc3F1YXJlZCB2YWx1ZSBhbmQgYSBwLXZhbHVlIG9mIGxlc3MgdGhhdCAwLjA1IHNpZ25pZmljYW5jZSBsZXZlbC4gU28gd2UgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgYW5kIGNvbmNsdWRlIHRoYXQgYGNhcmJgIGFuZCBgY3lsYCBoYXZlIGEgc2lnbmlmaWNhbnQgcmVsYXRpb25zaGlwIHdoaWNoIG1lYW5zIHRoZXkgYXJlIGluZGVwZW5kZW50Lg0KDQoNCiMjIEV4ZXJjaXNlIDMNCjI1NiB2aXN1YWwgYXJ0aXN0cyB3ZXJlIHN1cnZleWVkIHRvIGZpbmQgb3V0IHRoZWlyIHpvZGlhYyBzaWduLiBUaGUgcmVzdWx0cyB3ZXJlOiBBcmllcyAoMjkpLCBUYXVydXMgKDI0KSwgR2VtaW5pICgyMiksIENhbmNlciAoMTkpLCBMZW8gKDIxKSwgVmlyZ28gKDE4KSwgTGlicmEgKDE5KSwgU2NvcnBpbyAoMjApLCBTYWdpdHRhcml1cyAoMjMpLCBDYXByaWNvcm4gKDE4KSwgQXF1YXJpdXMgKDIwKSwgUGlzY2VzICgyMykuIFRlc3QgdGhlIGh5cG90aGVzaXMgdGhhdCB6b2RpYWMgc2lnbnMgYXJlIGV2ZW5seSBkaXN0cmlidXRlZCBhY3Jvc3MgdmlzdWFsIGFydGlzdHMuIFsoUmVmZXJlbmNlKV0oaHR0cHM6Ly93d3cuc3RhdGlzdGljc2hvd3RvLmNvbS9wcm9iYWJpbGl0eS1hbmQtc3RhdGlzdGljcy9jaGktc3F1YXJlLykNCg0KYGBge3J9DQojIEhlcmUgd2UgaW5wdXQvbWFrZSB0aGUgZGF0YSBhcyBhIGRhdGEgZnJhbWUNCkJpcnRocyA8LWMoMjksMjQsMjIsMTksMjEsMTgsMTksMjAsMjMsMTgsMjAsMjMpDQoNCiMgVGhlIFNpbXBsZSBNZXRob2QgDQpjaGlzcS50ZXN0KEJpcnRocykNCmBgYA0KYGBge3J9DQojIE1hbnVhbCBNZXRob2QNCm48LTI1Ng0KZXhwZWN0ZWQgPC0gYygxLzEyKSAqIG4NCmFscGhhIDwtIC4wNQ0KciA8LSBjKDEgLCAyICwgMywgNCAsIDUgLCA2ICwgNywgOCAsIDkgLCAxMCAsIDExICwgMTIpDQpkZiA8LSAxMiAtIDENCihjaGlzcSA8LSBzdW0oKEJpcnRocyAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQpKQ0KKHBfdmFsdWUgPC0gcGNoaXNxKHEgPSBjaGlzcSwgZGYgPSBkZiwgbG93ZXIudGFpbCA9IEYpKQ0KYGBgDQpCb3RoIG1ldGhvZHMgc2hvd3MgdGhhdCBub3cgd2UgaGF2ZSBsb3cgY2hpLXNxdWFyZSB2YWx1ZSBhbmQgYSBwLXZhbHVlIG1vcmUgdGhhbiAwLjA1IHNpZ25pZmljYW5jZSBsZXZlbCwgc28gd2UgYWNjZXB0IHRoZSBudWxsIGh5cG90aGVzaXMgd2hpY2ggbWVhbnMgYWxsIHRoZSB6b2RpYWMgc2lnbnMgZGlzdHJpYnV0ZWQgZXZlbmx5IGFjcm9zcyB2aXN1YWwgYXJ0aXN0cy4NCg0K