Load Data
setwd("~/Desktop/R Datasets/RSaidi CSV Datasets")
nations<-read.csv("nations.csv")
Import Relevant Libraries
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.1
## ✓ tidyr 1.1.1 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(RColorBrewer)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
Plot 1
nations1 <- nations %>% mutate(gdp = (gdp_percap*population)/1000000000000)
nations2 <- nations1 %>% filter(country == "China" | country == "Germany" | country == "Japan" | country == "United States")
head(nations2)
## iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
## 1 CN CHN China 1992 1260.162 1164970000 18.27 29.4
## 2 CN CHN China 2005 5053.379 1303720000 12.40 14.0
## 3 CN CHN China 2000 2915.415 1262645000 14.03 21.2
## 4 CN CHN China 1991 1091.449 1150780000 19.68 29.7
## 5 CN CHN China 2013 12218.521 1357380000 12.08 6.3
## 6 CN CHN China 1999 2649.745 1252735000 14.64 22.2
## region income gdp
## 1 East Asia & Pacific Upper middle income 1.468052
## 2 East Asia & Pacific Upper middle income 6.588191
## 3 East Asia & Pacific Upper middle income 3.681134
## 4 East Asia & Pacific Upper middle income 1.256017
## 5 East Asia & Pacific Upper middle income 16.585176
## 6 East Asia & Pacific Upper middle income 3.319429
nations_plot <- ggplot(nations2, aes(year,gdp,color = country)) + geom_point() + geom_line() + ylab("GDP ($ trillion)") + xlab("Year") + ggtitle("China's Rise to Become the World's Largest Economy") + theme(plot.title = element_text(hjust = 0.5))
nations_plot1 <- nations_plot+scale_color_brewer(palette = "Set1") + theme(legend.title = element_blank())
nations_plot1 <- ggplotly(nations_plot1)
nations_plot1
Plot 2
nations3 <- nations1 %>% group_by(region,year) %>% summarise(GDP = sum(gdp,na.rm = TRUE))
## `summarise()` regrouping output by 'region' (override with `.groups` argument)
nations_plot2 <- ggplot(nations3, aes(year,GDP,fill = region)) + geom_area(color = "white")+ scale_fill_brewer(palette = "Set2")+ ylab("GDP ($ trillion)") + xlab("Year") + ggtitle("GDP by Region") + theme(legend.title = element_blank()) + theme(plot.title = element_text(hjust = 0.5))
nations_plot3 <- ggplotly(nations_plot2)
nations_plot3