Parte teórica del modelo de Poisson(DEMOSTRACIÓN)

Partiremos de la ecuación de Poisson para realizar la demostración:

\[P(x)= \frac{e^-λ*λ^x}{x!}\] Luego Planteamos la distribución teórica:

\[E(x)=\sum_{n=0}^\infty x*P(x)\] Ahora, cuando reemplazamos la ecuación de Poisson en la distribución teórica, obtenemos que: \[E(x)=\sum_{n=0}^\infty \frac{e^-λ*λ^x}{(x-1)!}\]

Factorizmos: \[E(x)=λ\sum_{n=0}^\infty \frac{e^-λ*λ^{x-1}}{(x-1)!}\] Ahora, asumamos que y= x-1 y procedamos a reemplazar: \[E(x)=λ\sum_{n=0}^\infty \frac{e^-λ*λ^y}{y!}\] Por tanto: \[P(y)= \frac{e^-λ*λ^y}{y!}\] En ese sentido: \[E(x)=λ\sum_{n=0}^\infty P(y)\]

La suma de todas las probabilidades que cobija "y2 es igual a 1, por tanto: \[E(x)=λ\]

Parte práctica

Supongamos que X va a ser el número de homicidios reportados por día en CAI de un barrio altamente peligroso en la ciudad de Cali:

x=c(10,8,6,8,4,12,5,11,9,6,15)

Ahora calculamos el λ que maximiza nuestra muestra:

calc_verosimil=function(l){
verosimiltud=prod(dpois(x,lambda = l))
return(verosimiltud)
}


lambdas=seq(0,20,0.1)
probas=sapply(lambdas, calc_verosimil)

plot(lambdas,probas,type="l")

De la gráfica vemos que el mayor lambda está al rededor de 10, sin embargo Para ser más precisos creamos un data.frame que determine el mayor λ:

resultados=data.frame(lambdas,probas)
resultados
##     lambdas        probas
## 1       0.0  0.000000e+00
## 2       0.1 4.165424e-154
## 3       0.2 2.746343e-126
## 4       0.3 3.262941e-110
## 5       0.4  6.027352e-99
## 6       0.5  2.581926e-90
## 7       0.6  2.383730e-83
## 8       0.7  1.557871e-77
## 9       0.8  1.465718e-72
## 10      0.9  3.138077e-68
## 11      1.0  2.089988e-64
## 12      1.1  5.411682e-61
## 13      1.2  6.422928e-58
## 14      1.3  3.959562e-55
## 15      1.4  1.397280e-52
## 16      1.5  3.048615e-50
## 17      1.6  4.376013e-48
## 18      1.7  4.347854e-46
## 19      1.8  3.118659e-44
## 20      1.9  1.672888e-42
## 21      2.0  6.913916e-41
## 22      2.1  2.258366e-39
## 23      2.2  5.959209e-38
## 24      2.3  1.294641e-36
## 25      2.4  2.354320e-35
## 26      2.5  3.636183e-34
## 27      2.6  4.831207e-33
## 28      2.7  5.585098e-32
## 29      2.8  5.675028e-31
## 30      2.9  5.114474e-30
## 31      3.0  4.121574e-29
## 32      3.1  2.991855e-28
## 33      3.2  1.969316e-27
## 34      3.3  1.182507e-26
## 35      3.4  6.513099e-26
## 36      3.5  3.307057e-25
## 37      3.6  1.555094e-24
## 38      3.7  6.800796e-24
## 39      3.8  2.776718e-23
## 40      3.9  1.062241e-22
## 41      4.0  3.820015e-22
## 42      4.1  1.295342e-21
## 43      4.2  4.153473e-21
## 44      4.3  1.262667e-20
## 45      4.4  3.648226e-20
## 46      4.5  1.004113e-19
## 47      4.6  2.638266e-19
## 48      4.7  6.630664e-19
## 49      4.8  1.597022e-18
## 50      4.9  3.692683e-18
## 51      5.0  8.210451e-18
## 52      5.1  1.758163e-17
## 53      5.2  3.631224e-17
## 54      5.3  7.243468e-17
## 55      5.4  1.397347e-16
## 56      5.5  2.610116e-16
## 57      5.6  4.726260e-16
## 58      5.7  8.305304e-16
## 59      5.8  1.417838e-15
## 60      5.9  2.353750e-15
## 61      6.0  3.803337e-15
## 62      6.1  5.987257e-15
## 63      6.2  9.190058e-15
## 64      6.3  1.376535e-14
## 65      6.4  2.013581e-14
## 66      6.5  2.878612e-14
## 67      6.6  4.024701e-14
## 68      6.7  5.506951e-14
## 69      6.8  7.378935e-14
## 70      6.9  9.688275e-14
## 71      7.0  1.247165e-13
## 72      7.1  1.574958e-13
## 73      7.2  1.952157e-13
## 74      7.3  2.376211e-13
## 75      7.4  2.841803e-13
## 76      7.5  3.340774e-13
## 77      7.6  3.862265e-13
## 78      7.7  4.393075e-13
## 79      7.8  4.918234e-13
## 80      7.9  5.421747e-13
## 81      8.0  5.887453e-13
## 82      8.1  6.299942e-13
## 83      8.2  6.645428e-13
## 84      8.3  6.912539e-13
## 85      8.4  7.092933e-13
## 86      8.5  7.181713e-13
## 87      8.6  7.177605e-13
## 88      8.7  7.082897e-13
## 89      8.8  6.903168e-13
## 90      8.9  6.646821e-13
## 91      9.0  6.324487e-13
## 92      9.1  5.948348e-13
## 93      9.2  5.531429e-13
## 94      9.3  5.086918e-13
## 95      9.4  4.627559e-13
## 96      9.5  4.165131e-13
## 97      9.6  3.710067e-13
## 98      9.7  3.271184e-13
## 99      9.8  2.855545e-13
## 100     9.9  2.468439e-13
## 101    10.0  2.113441e-13
## 102    10.1  1.792567e-13
## 103    10.2  1.506463e-13
## 104    10.3  1.254635e-13
## 105    10.4  1.035686e-13
## 106    10.5  8.475485e-14
## 107    10.6  6.876982e-14
## 108    10.7  5.533472e-14
## 109    10.8  4.416027e-14
## 110    10.9  3.495953e-14
## 111    11.0  2.745764e-14
## 112    11.1  2.139867e-14
## 113    11.2  1.654996e-14
## 114    11.3  1.270436e-14
## 115    11.4  9.680797e-15
## 116    11.5  7.323660e-15
## 117    11.6  5.501210e-15
## 118    11.7  4.103499e-15
## 119    11.8  3.039961e-15
## 120    11.9  2.236917e-15
## 121    12.0  1.635116e-15
## 122    12.1  1.187442e-15
## 123    12.2  8.568163e-16
## 124    12.3  6.143561e-16
## 125    12.4  4.377783e-16
## 126    12.5  3.100510e-16
## 127    12.6  2.182726e-16
## 128    12.7  1.527544e-16
## 129    12.8  1.062814e-16
## 130    12.9  7.352396e-17
## 131    13.0  5.057633e-17
## 132    13.1  3.459793e-17
## 133    13.2  2.353823e-17
## 134    13.3  1.592776e-17
## 135    13.4  1.072081e-17
## 136    13.5  7.178386e-18
## 137    13.6  4.781741e-18
## 138    13.7  3.169115e-18
## 139    13.8  2.089849e-18
## 140    13.9  1.371349e-18
## 141    14.0  8.955055e-19
## 142    14.1  5.819766e-19
## 143    14.2  3.764345e-19
## 144    14.3  2.423531e-19
## 145    14.4  1.553143e-19
## 146    14.5  9.908444e-20
## 147    14.6  6.293000e-20
## 148    14.7  3.979192e-20
## 149    14.8  2.505202e-20
## 150    14.9  1.570460e-20
## 151    15.0  9.803292e-21
## 152    15.1  6.094004e-21
## 153    15.2  3.772620e-21
## 154    15.3  2.326035e-21
## 155    15.4  1.428386e-21
## 156    15.5  8.736824e-22
## 157    15.6  5.323071e-22
## 158    15.7  3.230676e-22
## 159    15.8  1.953297e-22
## 160    15.9  1.176543e-22
## 161    16.0  7.060455e-23
## 162    16.1  4.221460e-23
## 163    16.2  2.514883e-23
## 164    16.3  1.492854e-23
## 165    16.4  8.830398e-24
## 166    16.5  5.205056e-24
## 167    16.6  3.057532e-24
## 168    16.7  1.789926e-24
## 169    16.8  1.044324e-24
## 170    16.9  6.072803e-25
## 171    17.0  3.519765e-25
## 172    17.1  2.033412e-25
## 173    17.2  1.170958e-25
## 174    17.3  6.721666e-26
## 175    17.4  3.846348e-26
## 176    17.5  2.194178e-26
## 177    17.6  1.247849e-26
## 178    17.7  7.075132e-27
## 179    17.8  3.999482e-27
## 180    17.9  2.254159e-27
## 181    18.0  1.266751e-27
## 182    18.1  7.098030e-28
## 183    18.2  3.965868e-28
## 184    18.3  2.209563e-28
## 185    18.4  1.227596e-28
## 186    18.5  6.801403e-29
## 187    18.6  3.757932e-29
## 188    18.7  2.070710e-29
## 189    18.8  1.137947e-29
## 190    18.9  6.236916e-30
## 191    19.0  3.409376e-30
## 192    19.1  1.858870e-30
## 193    19.2  1.010890e-30
## 194    19.3  5.483422e-31
## 195    19.4  2.966903e-31
## 196    19.5  1.601291e-31
## 197    19.6  8.621117e-32
## 198    19.7  4.630140e-32
## 199    19.8  2.480692e-32
## 200    19.9  1.325898e-32
## 201    20.0  7.069956e-33

Obtenemos que el λ= 9.6 con probabilidad de 3.710067e-13 es el que tiene la mayor probabilidad teórica y es consistente con la practica

which.max(resultados$probas)
## [1] 86
mean(x)
## [1] 8.545455