Qimin Liu
Fall 2020
Additive Treatment Effects
Multiplicative Treatment Effects
After log-transformation, we have
These can be rewritten as
To implement the method:
##
## Call:
## lm(formula = (log(y) ~ factor(g)))
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.7498 0.8936 0.9903 1.0931 1.5362
##
## Coefficients:
## Estimate (log-scale) s.e. t value Pr(>|t|)
## (Intercept) 2.471e+02 2.386e-02 2.309e+02 1.481e-113
## factor(g)treatment 9.489e-01 3.439e-02 -1.526e+00 1.309e-01
## 2.5 % 97.5 %
## (Intercept) 2.356e+02 259.122
## factor(g)treatment 8.861e-01 1.016
##
## Residual standard error: 0.1546 on 79 degrees of freedom
## Multiple R-squared: 0.02864, Adjusted R-squared: 0.01635
## F-statistic: 2.33 on 1 and 79 DF, p-value: 0.1309
After log-transformation, we have
These can be rewritten as
To implement the method:
ANCOHET:
Full Model: \(Y_{ij}=\mu+\alpha_j +\beta_j X_{ij}+\epsilon_{ij}\)
Restricted Model: \(Y_{ij}=\mu+\beta_j X_{ij}+\epsilon_{ij}\)
Treatment Effects: \(\alpha_j+I_j X_{ij}\)
\(\beta\): Effect (slope) parameter of the covariate
\(\beta_j\): Effect (slope) parameter of the covariate for group \(j\)
\(I_j=\beta_j-\beta\): Difference in the covariate effect (slope) due to group \(j\) membership
##
## Call:
## lm(formula = (log(y) ~ log(x) + factor(g)))
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.7474 0.9404 0.9858 1.0541 1.3438
##
## Coefficients:
## Estimate (log-scale) s.e. t value Pr(>|t|) 2.5 %
## (Intercept) 4.056e+00 3.631e-01 3.856e+00 2.353e-04 1.969e+00
## x 7.400e-01 6.533e-02 1.133e+01 3.811e-18 6.099e-01
## factor(g)treatment 9.563e-01 2.129e-02 -2.098e+00 3.919e-02 9.166e-01
## 97.5 %
## (Intercept) 8.358
## x 0.870
## factor(g)treatment 0.998
##
## Residual standard error: 0.09569 on 78 degrees of freedom
## Multiple R-squared: 0.6327, Adjusted R-squared: 0.6233
## F-statistic: 67.19 on 2 and 78 DF, p-value: < 2.2e-16
Full Model: \(\frac{Y_{ij}-X_{ij}}{Y_{ij}+X_{ij}}=\mu+\alpha_j+\epsilon_{ij}\)
Restricted Model: \(\frac{Y_{ij}-X_{ij}}{Y_{ij}+X_{ij}}=\mu+\epsilon_{ij}\)
Data-generating schemes:
Conditions:
Models:
Rejection rates (i.e., power under nonnull effect sizes and type I error rates given null effects) recorded over 1000 replications
\(\zeta=\frac{\theta_a}{\theta_b}=\frac{\mu^*_a}{\mu^*_b}\)
CI: \(\text{exp}(\hat{\mu}^l_a-\hat{\mu}^l_b \pm t_{1-\frac{\alpha}{2},2n-2}s^l_p\sqrt{\frac{2}{n}})\)
\(\zeta\) compared with Cohen’s \(d\)
Overall effect size: \(\frac{R^2}{1-R^2}\) where \(R^2\) is the proportion of explained variance due to the treatment
## BCa LL BCa UL exp perc LL exp perc UL
## control 1.8914575 8.5616014 1.8708522 8.6103104
## treatment 0.9193911 0.9964502 0.9194517 0.9977868
## x 0.6039432 0.8786945 0.6040483 0.8815842
## sig2nois ratio 0.8514882 2.7960616 0.9888214 3.2603955
Here we have
## $`the number of group`
## [1] 3
##
## $`the per-group sample size`
## [1] 40
##
## $`r squared`
## [1] 0.05
##
## $`significance level`
## [1] 0.05
##
## $power
## [1] 0.5493885
## $`the number of group`
## [1] 3
##
## $`the per-group sample size`
## [1] 40
##
## $`pretest-posttest correlation`
## [1] 0.3
##
## $`r squared`
## [1] 0.05
##
## $`significance level`
## [1] 0.05
##
## $power
## [1] 0.7137778
## $`the number of group`
## [1] 3
##
## $`proportion of variance to be explained`
## [1] 0.05
##
## $`significance level`
## [1] 0.05
##
## $`desired power`
## [1] 0.8
##
## $`the per-group sample size requirement`
## [1] 68.62034
## $`the number of group`
## [1] 3
##
## $`pretest-posttest correlation`
## [1] 0.3
##
## $`proportion of variance to be explained`
## [1] 0.05
##
## $`significance level`
## [1] 0.05
##
## $`desired power`
## [1] 0.8
##
## $`the per-group sample size requirement`
## [1] 48.34812
Visualization
ABC: AIC comparison with Box-Cox transformation
Evaluation via Monte Carlo Simulation and Further Discussion
## $ancova
## [1] 759.9898
##
## $ancohet
## [1] 761.6763
##
## $`ancova-l`
## [1] 746.6123
##
## $lancova
## [1] 743.1558
## $anova
## [1] 830.5177
##
## $lanova
## [1] 819.9362
Interactive cognitive-motor step training on cognitive risk factors for falling in older adults
LAMME Web App @ https://qmliu.shinyapps.io/LAMME/