Importar Datos

library(readr)
library(DT)
Reportes <- read_csv("Mobility_Report2020Mexico.csv")
## 
## -- Column specification --------------------------------------------------------------------------
## cols(
##   country_region_code = col_character(),
##   country_region = col_character(),
##   sub_region_1 = col_character(),
##   sub_region_2 = col_logical(),
##   metro_area = col_logical(),
##   iso_3166_2_code = col_character(),
##   census_fips_code = col_logical(),
##   date = col_date(format = ""),
##   retail_and_recreation_percent_change_from_baseline = col_double(),
##   grocery_and_pharmacy_percent_change_from_baseline = col_double(),
##   parks_percent_change_from_baseline = col_double(),
##   transit_stations_percent_change_from_baseline = col_double(),
##   workplaces_percent_change_from_baseline = col_double(),
##   residential_percent_change_from_baseline = col_double()
## )
Reportes
## # A tibble: 7,986 x 14
##    country_region_~ country_region sub_region_1 sub_region_2 metro_area
##    <chr>            <chr>          <chr>        <lgl>        <lgl>     
##  1 MX               Mexico         <NA>         NA           NA        
##  2 MX               Mexico         <NA>         NA           NA        
##  3 MX               Mexico         <NA>         NA           NA        
##  4 MX               Mexico         <NA>         NA           NA        
##  5 MX               Mexico         <NA>         NA           NA        
##  6 MX               Mexico         <NA>         NA           NA        
##  7 MX               Mexico         <NA>         NA           NA        
##  8 MX               Mexico         <NA>         NA           NA        
##  9 MX               Mexico         <NA>         NA           NA        
## 10 MX               Mexico         <NA>         NA           NA        
## # ... with 7,976 more rows, and 9 more variables: iso_3166_2_code <chr>,
## #   census_fips_code <lgl>, date <date>,
## #   retail_and_recreation_percent_change_from_baseline <dbl>,
## #   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
## #   parks_percent_change_from_baseline <dbl>,
## #   transit_stations_percent_change_from_baseline <dbl>,
## #   workplaces_percent_change_from_baseline <dbl>,
## #   residential_percent_change_from_baseline <dbl>

*un analisis de regresion logistica

colores <- NULL
colores[Reportes$residential_percent_change_from_baseline == -1] <- "green"
colores[Reportes$residential_percent_change_from_baseline == -2] <- "red"
plot(Reportes$residential_percent_change_from_baseline,Reportes$workplaces_percent_change_from_baseline, pch=21, bg=colores)

reg <- glm( workplaces_percent_change_from_baseline ~ residential_percent_change_from_baseline , data = Reportes)
summary(reg)
## 
## Call:
## glm(formula = workplaces_percent_change_from_baseline ~ residential_percent_change_from_baseline, 
##     data = Reportes)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -64.005   -4.896   -0.957    4.213   38.839  
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                               4.95724    0.17453    28.4   <2e-16
## residential_percent_change_from_baseline -2.42180    0.01206  -200.8   <2e-16
##                                             
## (Intercept)                              ***
## residential_percent_change_from_baseline ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 60.08583)
## 
##     Null deviance: 2903189  on 7985  degrees of freedom
## Residual deviance:  479725  on 7984  degrees of freedom
## AIC: 55376
## 
## Number of Fisher Scoring iterations: 2
datos <- data.frame(residential_percent_change_from_baseline = seq(12))

#Es una variable que hace una prediccion en funcion del modelo regresion en el modelo de 
probabilidades <- predict(reg,datos,type = "response")

plot(Reportes$residential_percent_change_from_baseline,Reportes$workplaces_percent_change_from_baseline, pch=21, bg=colores)

##Mostrar las columnas

names(Reportes)
##  [1] "country_region_code"                               
##  [2] "country_region"                                    
##  [3] "sub_region_1"                                      
##  [4] "sub_region_2"                                      
##  [5] "metro_area"                                        
##  [6] "iso_3166_2_code"                                   
##  [7] "census_fips_code"                                  
##  [8] "date"                                              
##  [9] "retail_and_recreation_percent_change_from_baseline"
## [10] "grocery_and_pharmacy_percent_change_from_baseline" 
## [11] "parks_percent_change_from_baseline"                
## [12] "transit_stations_percent_change_from_baseline"     
## [13] "workplaces_percent_change_from_baseline"           
## [14] "residential_percent_change_from_baseline"

###Visualizar

head(Reportes)
## # A tibble: 6 x 14
##   country_region_~ country_region sub_region_1 sub_region_2 metro_area
##   <chr>            <chr>          <chr>        <lgl>        <lgl>     
## 1 MX               Mexico         <NA>         NA           NA        
## 2 MX               Mexico         <NA>         NA           NA        
## 3 MX               Mexico         <NA>         NA           NA        
## 4 MX               Mexico         <NA>         NA           NA        
## 5 MX               Mexico         <NA>         NA           NA        
## 6 MX               Mexico         <NA>         NA           NA        
## # ... with 9 more variables: iso_3166_2_code <chr>, census_fips_code <lgl>,
## #   date <date>, retail_and_recreation_percent_change_from_baseline <dbl>,
## #   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
## #   parks_percent_change_from_baseline <dbl>,
## #   transit_stations_percent_change_from_baseline <dbl>,
## #   workplaces_percent_change_from_baseline <dbl>,
## #   residential_percent_change_from_baseline <dbl>

*Matriz de diagramas de dispersión

pairs(Reportes[9:14])

A continuacion se hara una cuantificacion del grado de relacion lineal, por medio de la matriz de coeficientes de correlacion

cor(Reportes[9:14])
##                                                    retail_and_recreation_percent_change_from_baseline
## retail_and_recreation_percent_change_from_baseline                                          1.0000000
## grocery_and_pharmacy_percent_change_from_baseline                                           0.8599012
## parks_percent_change_from_baseline                                                          0.9265364
## transit_stations_percent_change_from_baseline                                                      NA
## workplaces_percent_change_from_baseline                                                     0.6866173
## residential_percent_change_from_baseline                                                   -0.8594864
##                                                    grocery_and_pharmacy_percent_change_from_baseline
## retail_and_recreation_percent_change_from_baseline                                         0.8599012
## grocery_and_pharmacy_percent_change_from_baseline                                          1.0000000
## parks_percent_change_from_baseline                                                         0.8495828
## transit_stations_percent_change_from_baseline                                                     NA
## workplaces_percent_change_from_baseline                                                    0.6148245
## residential_percent_change_from_baseline                                                  -0.7434494
##                                                    parks_percent_change_from_baseline
## retail_and_recreation_percent_change_from_baseline                          0.9265364
## grocery_and_pharmacy_percent_change_from_baseline                           0.8495828
## parks_percent_change_from_baseline                                          1.0000000
## transit_stations_percent_change_from_baseline                                      NA
## workplaces_percent_change_from_baseline                                     0.6652037
## residential_percent_change_from_baseline                                   -0.8265626
##                                                    transit_stations_percent_change_from_baseline
## retail_and_recreation_percent_change_from_baseline                                            NA
## grocery_and_pharmacy_percent_change_from_baseline                                             NA
## parks_percent_change_from_baseline                                                            NA
## transit_stations_percent_change_from_baseline                                                  1
## workplaces_percent_change_from_baseline                                                       NA
## residential_percent_change_from_baseline                                                      NA
##                                                    workplaces_percent_change_from_baseline
## retail_and_recreation_percent_change_from_baseline                               0.6866173
## grocery_and_pharmacy_percent_change_from_baseline                                0.6148245
## parks_percent_change_from_baseline                                               0.6652037
## transit_stations_percent_change_from_baseline                                           NA
## workplaces_percent_change_from_baseline                                          1.0000000
## residential_percent_change_from_baseline                                        -0.9136516
##                                                    residential_percent_change_from_baseline
## retail_and_recreation_percent_change_from_baseline                               -0.8594864
## grocery_and_pharmacy_percent_change_from_baseline                                -0.7434494
## parks_percent_change_from_baseline                                               -0.8265626
## transit_stations_percent_change_from_baseline                                            NA
## workplaces_percent_change_from_baseline                                          -0.9136516
## residential_percent_change_from_baseline                                          1.0000000

###Grafica de la recta de minimos cuadrados

plot(Reportes$residential_percent_change_from_baseline,Reportes$workplaces_percent_change_from_baseline, xlab = "residential_percent", ylab="workplaces_percent")
abline(reg)

### Modelacion (calculo) de predicciones

Predicc <-data.frame(residential_percent_change_from_baseline=seq(0,30))
predict(reg,Predicc)
##           1           2           3           4           5           6 
##   4.9572387   2.5354348   0.1136309  -2.3081730  -4.7299769  -7.1517808 
##           7           8           9          10          11          12 
##  -9.5735847 -11.9953885 -14.4171924 -16.8389963 -19.2608002 -21.6826041 
##          13          14          15          16          17          18 
## -24.1044080 -26.5262119 -28.9480157 -31.3698196 -33.7916235 -36.2134274 
##          19          20          21          22          23          24 
## -38.6352313 -41.0570352 -43.4788390 -45.9006429 -48.3224468 -50.7442507 
##          25          26          27          28          29          30 
## -53.1660546 -55.5878585 -58.0096624 -60.4314662 -62.8532701 -65.2750740 
##          31 
## -67.6968779

Intervalo de confianza

confint(reg)
## Waiting for profiling to be done...
##                                              2.5 %    97.5 %
## (Intercept)                               4.615162  5.299316
## residential_percent_change_from_baseline -2.445439 -2.398169

Todo esto sirve para modelar