Here were going to investigate the important reactions thare are controlling HCOOH in the No Emissions and Emissions Simulations. The plots below show that HCOOH production is higher in the Emissions simulation. Unfortunately, while I did comment out the Emisssions within the run_boxmox.csh script, I didn’t remove the linked emissions file, so the model the same emissions file in each situation. My bad…..
Each line in the following plots are smoothed averages over the total simulations to better visualize the results. HCOOH and Glyoxal show signficant differences between the simulations, but very little difference for CH3COOH. It’s currently unclear why this is the case. Perhaps there is less consumop
There are a 14 total reactions that produce HCOOH, with only minor chemical sink. There reaction are:
There are 4 reactions that create CH3COOH
Lets use the reaction rates and calculating the production of each process as a fraction.
For both sets of simulations, during the beginning of the simulation there are relatively simliar contributions from isoprene, alpha pinene, MVK, and MACR. As emissions occur, oxidation of C2H2 by OH becomes more important, and becomes dominant at the end of the simulation. For the non-emissions case, MVK and HOCH2OO reacting with NO and OH become more dominant, though the total production is negligible. Its clear reactions of biogenic VOCs and their oxidation products are important in HCOOH formation. Other biogenics like limonene and beta-caryophyllene contributions were not considered as we didn’t include their emissions in the simulations.
Now to look at Acetic Acid:
There are 4 reactions that for CH3COOH within the simulation
135 CH3CO3 + CH3O2 –> RO2_RO2 + 0.1 CH3COOH + CH2O + 0.9 HO2 + 0.9 CH3O2 + 0.9 CO2
136 HO2 + CH3CO3 –> RO2_HO2 + 0.15 CH3COOH + 0.4 CH3COOOH + 0.45 OH + 0.15 O3 + 0.45 CH3O2
151 C3H6 + O3 –> 0.12 CH3COOH + 0.1 CH4 + 0.12 HCOOH + 0.56 CO + 0.5 CH3CHO + 0.5 CH2O + 0.36 OH + 0.28 HO2 + 0.28 CH3O2 + 0.2 CO2
186 HO2 + MCO3 –> 0.15 CH3COOH + 0.4 CH3COOOH + 0.45 CH2O + 0.45 OH + 0.15 O3 + 0.45 CH3CO3 + 0.45 CO2
## ReactionNumber
## 1 135
## 2 136
## 3 138
## 4 151
## 5 186
## Reaction
## 1 CH3CO3 + CH3O2 --> RO2_RO2 + 0.1 CH3COOH + CH2O + 0.9 HO2 + 0.9 CH3O2 + 0.9 CO2
## 2 HO2 + CH3CO3 --> RO2_HO2 + 0.15 CH3COOH + 0.4 CH3COOOH + 0.45 OH + 0.15 O3 + 0.45 CH3O2
## 3 CH3COOH + OH --> VOC_OH + CH3O2 + H2O + CO2
## 4 C3H6 + O3 --> 0.12 CH3COOH + 0.1 CH4 + 0.12 HCOOH + 0.56 CO + 0.5 CH3CHO + 0.5 CH2O + 0.36 OH + 0.28 HO2 + 0.28 CH3O2 + 0.2 CO2
## 5 HO2 + MCO3 --> 0.15 CH3COOH + 0.4 CH3COOOH + 0.45 CH2O + 0.45 OH + 0.15 O3 + 0.45 CH3CO3 + 0.45 CO2
## [1] "#8DD3C7" "#FFFFB3" "#BEBADA" "#FB8072" "#80B1D3"
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
In these simulations, production of CH3COOH is dominated by HO2+CH3CO3, which creates a distinct diurnal cycle within both simulations. Looking at the reactions that control CH3CO3
## ReactionNumber
## 1 15
## 2 19
## 3 27
## 4 28
## 5 35
## 6 37
## 7 40
## 8 42
## 9 43
## 10 45
## 11 47
## 12 50
## 13 53
## 14 54
## 15 59
## 16 131
## 17 132
## 18 134
## 19 135
## 20 136
## 21 137
## 22 139
## 23 148
## 24 149
## 25 157
## 26 158
## 27 164
## 28 165
## 29 166
## 30 175
## 31 176
## 32 178
## 33 179
## 34 181
## 35 184
## 36 185
## 37 186
## 38 187
## 39 188
## 40 189
## 41 190
## 42 191
## 43 195
## 44 208
## 45 213
## 46 222
## 47 228
## 48 233
## 49 298
## 50 301
## 51 304
## 52 307
## 53 310
## 54 328
## Reaction
## 1 BIGALD --> 0.13 GLYOXAL + 0.45 CO + 0.18 CH3COCHO + 0.56 HO2 + 0.13 CH3CO3
## 2 BIGALD4 --> CO + CH3COCHO + HO2 + CH3CO3
## 3 CH3COCH3 --> CH3CO3 + CH3O2
## 4 CH3COCHO --> CO + HO2 + CH3CO3
## 5 HONITR --> 0.17 CH3COCH3 + 0.33 CO + 0.33 GLYALD + 0.33 CH3CHO + 0.17 HYAC + 0.33 CH2O + NO2 + 0.67 HO2 + 0.33 CH3CO3
## 6 HYAC --> CH2O + HO2 + CH3CO3
## 7 MACR --> 0.67 CO + 0.67 CH2O + 0.33 OH + 0.67 HO2 + 0.67 CH3CO3 + 0.33 MCO3
## 8 MEK --> C2H5O2 + CH3CO3
## 9 MEKOOH --> CH3CHO + OH + CH3CO3
## 10 MVK --> 0.7 CO + 0.7 C3H6 + 0.3 CH3CO3 + 0.3 CH3O2
## 11 NOA --> CH2O + NO2 + CH3CO3
## 12 PAN --> 0.6 NO2 + 0.4 NO3 + 0.6 CH3CO3 + 0.4 CH3O2 + 0.4 CO2
## 13 ROOH --> CH2O + OH + CH3CO3
## 14 TEPOMUC --> 1.5 CO + HO2 + 0.5 CH3CO3
## 15 TERPROD2 --> 0.5 CH3COCH3 + 1.7 CO + 0.15 RO2 + 0.68 CH2O + 1.2 HO2 + 0.65 CH3CO3 + 0.8 CO2
## 16 CH3CHO + NO3 --> HNO3 + CH3CO3
## 17 CH3CHO + OH --> VOC_OH + CH3CO3 + H2O
## 18 2 CH3CO3 --> RO2_RO2 + 2 CH3O2 + 2 CO2
## 19 CH3CO3 + CH3O2 --> RO2_RO2 + 0.1 CH3COOH + CH2O + 0.9 HO2 + 0.9 CH3O2 + 0.9 CO2
## 20 HO2 + CH3CO3 --> RO2_HO2 + 0.15 CH3COOH + 0.4 CH3COOOH + 0.45 OH + 0.15 O3 + 0.45 CH3O2
## 21 CH3CO3 + NO --> RO2_NO + NO2 + CH3O2 + CO2
## 22 CH3COOOH + OH --> VOC_OH + 0.5 CH2O + 0.5 CH3CO3 + H2O + 0.5 CO2
## 23 NO2 + CH3CO3 --> PAN
## 24 PAN + M --> NO2 + CH3CO3 + M
## 25 CH3COCHO + NO3 --> HNO3 + CO + CH3CO3
## 26 CH3COCHO + OH --> VOC_OH + CO + CH3CO3 + H2O
## 27 RO2 + CH3O2 --> RO2_RO2 + 0.5 CH3OH + 0.2 HYAC + 0.5 CH3COCHO + 0.8 CH2O + 0.3 HO2 + 0.3 CH3CO3
## 28 RO2 + HO2 --> RO2_HO2 + 0.85 ROOH + 0.15 CH2O + 0.15 OH + 0.15 CH3CO3
## 29 RO2 + NO --> RO2_NO + CH2O + NO2 + CH3CO3
## 30 MACRO2 + CH3CO3 --> 0.22 CO + 0.53 GLYALD + 0.22 HYAC + 0.25 CH3COCHO + 0.25 CH2O + 0.47 HO2 + 0.53 CH3CO3 + CH3O2
## 31 MACRO2 + CH3O2 --> 0.25 CH3OH + 0.11 CO + 0.26 GLYALD + 0.23 HYAC + 0.24 CH3COCHO + 0.88 CH2O + 0.73 HO2 + 0.26 CH3CO3
## 32 MACRO2 + NO3 --> 0.22 CO + 0.53 GLYALD + 0.22 HYAC + 0.25 CH3COCHO + 0.25 CH2O + NO2 + 0.47 HO2 + 0.53 CH3CO3
## 33 MACRO2 + NO --> 0.22 CO + 0.53 GLYALD + 0.22 HYAC + 0.25 CH3COCHO + 0.25 CH2O + NO2 + 0.47 HO2 + 0.53 CH3CO3
## 34 MACR + O3 --> 0.33 HCOOH + 0.65 CO + 0.88 CH3COCHO + 0.12 CH2O + 0.24 OH + 0.14 HO2 + 0.1 CH3CO3
## 35 CH3CO3 + MCO3 --> CH2O + CH3CO3 + CH3O2 + 2 CO2
## 36 MCO3 + CH3O2 --> 2 CH2O + HO2 + CH3CO3 + CO2
## 37 HO2 + MCO3 --> 0.15 CH3COOH + 0.4 CH3COOOH + 0.45 CH2O + 0.45 OH + 0.15 O3 + 0.45 CH3CO3 + 0.45 CO2
## 38 2 MCO3 --> 2 CH2O + 2 CH3CO3 + 2 CO2
## 39 NO + MCO3 --> CH2O + NO2 + CH3CO3
## 40 NO3 + MCO3 --> CH2O + NO2 + CH3CO3
## 41 MEKO2 + HO2 --> RO2_HO2 + 0.8 MEKOOH + 0.2 CH3CHO + 0.2 OH + 0.2 CH3CO3
## 42 MEKO2 + NO --> RO2_NO + CH3CHO + NO2 + CH3CO3
## 43 MVK + O3 --> 0.12 HCOOH + 0.56 CO + 0.1 CH3CHO + 0.5 CH3COCHO + 0.6 CH2O + 0.36 OH + 0.28 HO2 + 0.28 CH3CO3 + 0.1 CO2
## 44 ISOPAO2 + CH3CO3 --> RO2_RO2 + 0.39 MACR + 0.61 MVK + CH2O + HO2 + CH3O2 + CO2
## 45 ISOPBO2 + CH3CO3 --> RO2_RO2 + HYDRALD + HO2 + CH3O2
## 46 ISOPNO3 + CH3CO3 --> NC4CHO + HO2 + CH3O2
## 47 ISOP + O3 --> 0.11 HCOOH + 0.62 CO + 0.13 C3H6 + 0.3 MACR + 0.2 MVK + 0.91 CH2O + 0.32 OH + 0.37 HO2 + 0.08 CH3CO3 + 0.05 CH3O2
## 48 XO2 + CH3CO3 --> RO2_RO2 + 0.25 GLYOXAL + 0.25 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + 0.25 CH2O + HO2 + CH3O2 + CO2
## 49 APIN + O3 --> 0.05 BIGALK + 0.05 HCOOH + 0.1 BIGALD + 0.52 CH3COCH3 + 0.23 CO + 0.3 TERPROD2 + 0.33 TERPROD1 + 0.06 RO2 + 0.34 CH2O + 0.63 OH + 0.57 HO2 + 0.06 CH3CO3 + 0.27 CO2
## 50 BCARY + O3 --> 0.05 BIGALK + 0.05 HCOOH + 0.1 BIGALD + 0.52 CH3COCH3 + 0.23 CO + 0.3 TERPROD2 + 0.33 TERPROD1 + 0.06 RO2 + 0.34 CH2O + 0.63 OH + 0.57 HO2 + 0.06 CH3CO3 + 0.27 CO2
## 51 BPIN + O3 --> 0.05 BIGALK + 0.05 HCOOH + 0.1 BIGALD + 0.52 CH3COCH3 + 0.23 CO + 0.3 TERPROD2 + 0.33 TERPROD1 + 0.06 RO2 + 0.34 CH2O + 0.63 OH + 0.57 HO2 + 0.06 CH3CO3 + 0.27 CO2
## 52 LIMON + O3 --> 0.05 BIGALK + 0.05 HCOOH + 0.1 BIGALD + 0.52 CH3COCH3 + 0.23 CO + 0.3 TERPROD2 + 0.33 TERPROD1 + 0.06 RO2 + 0.34 CH2O + 0.63 OH + 0.57 HO2 + 0.06 CH3CO3 + 0.27 CO2
## 53 MYRC + O3 --> 0.05 BIGALK + 0.05 HCOOH + 0.1 BIGALD + 0.52 CH3COCH3 + 0.23 CO + 0.3 TERPROD2 + 0.33 TERPROD1 + 0.06 RO2 + 0.34 CH2O + 0.63 OH + 0.57 HO2 + 0.06 CH3CO3 + 0.27 CO2
## 54 TERPROD2 + OH --> 0.5 CH3COCH3 + 0.7 CO + 0.15 RO2 + 0.68 CH2O + 0.2 HO2 + 0.65 CH3CO3 + 1.8 CO2
## [1] 54
There are 54 reactions that are involved with CH3CO3, making its analysis highly complicated. However, when looking at some of these reactions, it does appear that anthropogenic emissions are the driving mechanism behind its formation. However, does seem to be some biogenic formation of CH3COOH as well. Ratios of HCOOH/CH3COOH might be useful for anthropogenic formation of organic acids with field data (which as has been done before).
## ReactionNumber
## 1 205
## 2 206
## 3 207
## 4 230
## 5 233
## 6 234
## 7 235
## 8 236
## 9 237
## 10 238
## Reaction
## 1 HPALD + OH --> VOC_OH + XO2
## 2 HYDRALD + OH --> VOC_OH + XO2
## 3 IEPOX + OH --> VOC_OH + XO2
## 4 ISOPOOH + OH --> VOC_OH + 0.6 IEPOX + 0.4 XO2 + 0.6 OH
## 5 XO2 + CH3CO3 --> RO2_RO2 + 0.25 GLYOXAL + 0.25 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + 0.25 CH2O + HO2 + CH3O2 + CO2
## 6 XO2 + CH3O2 --> RO2_RO2 + 0.3 CH3OH + 0.1 GLYOXAL + 0.2 CO + 0.1 GLYALD + 0.1 HYAC + 0.1 CH3COCHO + 0.8 CH2O + 0.8 HO2
## 7 XO2 + HO2 --> RO2_HO2 + XOOH
## 8 XO2 + NO --> RO2_NO + 0.25 GLYOXAL + 0.25 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + 0.25 CH2O + NO2 + HO2
## 9 XO2 + NO3 --> 0.25 GLYOXAL + 0.5 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + NO2 + HO2
## 10 XOOH + OH --> VOC_OH + 0.5 XO2 + 0.5 OH
There are 25 reactions that form glyoxal, making it’s formation difficult to study.
3 BENZOOH –> 0.5 BIGALD1 + GLYOXAL + OH + HO2
15 BIGALD –> 0.13 GLYOXAL + 0.45 CO + 0.18 CH3COCHO + 0.56 HO2 + 0.13 CH3CO3
51 PHENOOH –> 0.7 GLYOXAL + OH + HO2
60 TOLOOH –> 0.2 BIGALD2 + 0.2 BIGALD1 + 0.2 BIGALD3 + 0.6 GLYOXAL + 0.4 CH3COCHO + OH + HO2
62 XYLENOOH –> 0.2 BIGALD2 + 0.21 BIGALD4 + 0.06 BIGALD1 + 0.15 BIGALD3 + 0.34 GLYOXAL + 0.54 CH3COCHO + OH + HO2
63 XYLOLOOH –> 0.17 GLYOXAL + 0.51 CH3COCHO + OH + HO2
122 C2H2 + OH –> VOC_OH + 0.35 HCOOH + 0.65 GLYOXAL + 0.35 CO + 0.65 OH + 0.35 HO2
144 GLYALD + OH –> VOC_OH + 0.2 GLYOXAL + 0.8 CH2O + HO2 + 0.8 CO2
217 ISOPBO2 + NO –> RO2_NO + 0.87 HYDRALD + 0.08 ISOPNITB + 0.05 GLYOXAL + 0.05 GLYALD + 0.05 HYAC + 0.05 CH3COCHO + 0.92 NO2 + 0.92 HO2
218 ISOPBO2 + NO3 –> 0.95 HYDRALD + 0.05 GLYOXAL + 0.05 GLYALD + 0.05 HYAC + 0.05 CH3COCHO + NO2 + HO2
232 NC4CHO + OH –> VOC_OH + GLYOXAL + NOA + HO2
233 XO2 + CH3CO3 –> RO2_RO2 + 0.25 GLYOXAL + 0.25 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + 0.25 CH2O + HO2 + CH3O2 + CO2
234 XO2 + CH3O2 –> RO2_RO2 + 0.3 CH3OH + 0.1 GLYOXAL + 0.2 CO + 0.1 GLYALD + 0.1 HYAC + 0.1 CH3COCHO + 0.8 CH2O + 0.8 HO2
236 XO2 + NO –> RO2_NO + 0.25 GLYOXAL + 0.25 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + 0.25 CH2O + NO2 + HO2
237 XO2 + NO3 –> 0.25 GLYOXAL + 0.5 CO + 0.25 GLYALD + 0.25 HYAC + 0.25 CH3COCHO + NO2 + HO2
255 BENO2 + NO –> 0.9 GLYOXAL + 0.9 BIGALD + 0.9 NO2 + 0.9 HO2
258 BENZO2 + NO –> RO2_NO + 0.5 BIGALD1 + GLYOXAL + NO2 + HO2
271 MALO2 + HO2 –> RO2_HO2 + 0.16 GLYOXAL + 0.16 CO + 0.16 HO2
272 MALO2 + NO –> RO2_NO + 0.4 GLYOXAL + 0.4 CO + NO2 + 0.4 HO2
274 MDIALO2 + HO2 –> RO2_HO2 + 0.07 GLYOXAL + 0.14 CO + 0.07 CH3COCHO + 0.4 OH + 0.33 HO2 + 0.07 CH3O2
275 MDIALO2 + NO –> RO2_NO + 0.17 GLYOXAL + 0.35 CO + 0.17 CH3COCHO + NO2 + 0.83 HO2 + 0.17 CH3O2
278 PHENO2 + NO –> RO2_NO + 0.7 GLYOXAL + NO2 + HO2
285 TOLO2 + NO –> RO2_NO + 0.2 BIGALD2 + 0.2 BIGALD1 + 0.2 BIGALD3 + 0.6 GLYOXAL + 0.4 CH3COCHO + NO2 + HO2
291 XYLENO2 + NO –> RO2_NO + 0.2 BIGALD2 + 0.21 BIGALD4 + 0.06 BIGALD1 + 0.15 BIGALD3 + 0.34 GLYOXAL + 0.54 CH3COCHO + NO2 + HO2
294 XYLOLO2 + NO –> RO2_NO + 0.17 GLYOXAL + 0.51 CH3COCHO + NO2 + HO2
However, we can look at some correlations between certain
When looking at a correlation matrix, glyoxal does not a have strong relationship with isoprene in the emissions case but does in the non emissions case. The organic acids seem well correlated with each other, but its stronger in the non-emssions case (which makes sense due to CH3COOH having more anthropogenic sources)