# load them
pacman::p_load(mlmRev, tidyverse, lme4, foreign, merTools, sjPlot)# download a copy of data from the following link and save it to the
# data folder
# https://content.sph.harvard.edu/fitzmaur/ala2e/fat.dta# input data
dta <- read.dta("https://content.sph.harvard.edu/fitzmaur/ala2e/fat.dta")# 將變數重新命名
names(dta) <-c("ID", "Age", "Age_m", "Time", "PBF")# show first 6 obs.
head(dta)##   ID   Age Age_m  Time   PBF
## 1  1  9.32 13.19 -3.87  7.94
## 2  1 10.33 13.19 -2.86 15.65
## 3  1 11.24 13.19 -1.95 13.51
## 4  1 12.19 13.19 -1.00 23.23
## 5  1 13.24 13.19  0.05 10.52
## 6  1 14.24 13.19  1.05 20.45# construct indicator variable for after menarche
dta <- dta %>% 
       mutate(ID = factor(ID), #ID是類別數據,轉換為factor            
              Time_a = ifelse(Time > 0, Time, 0), #新增月經來的時間變數Time_a
              Menarche = as.factor(ifelse(Time > 0, "T", "F"))) #新增月經有沒有來的變數Menarche,用as.factor轉換為factor# show data structure
str(dta)## 'data.frame':    1049 obs. of  7 variables:
##  $ ID      : Factor w/ 162 levels "1","2","3","4",..: 1 1 1 1 1 1 2 2 2 2 ...
##  $ Age     : num  9.32 10.33 11.24 12.19 13.24 ...
##  $ Age_m   : num  13.2 13.2 13.2 13.2 13.2 ...
##  $ Time    : num  -3.87 -2.86 -1.95 -1 0.05 ...
##  $ PBF     : num  7.94 15.65 13.51 23.23 10.52 ...
##  $ Time_a  : num  0 0 0 0 0.05 ...
##  $ Menarche: Factor w/ 2 levels "F","T": 1 1 1 1 2 2 1 1 1 1 ...
##  - attr(*, "datalabel")= chr ""
##  - attr(*, "time.stamp")= chr "23 Mar 2011 15:46"
##  - attr(*, "formats")= chr [1:5] "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
##  - attr(*, "types")= int [1:5] 254 254 254 254 254
##  - attr(*, "val.labels")= chr [1:5] "" "" "" "" ...
##  - attr(*, "var.labels")= chr [1:5] "" "" "" "" ...
##  - attr(*, "version")= int 12# black and white theme                     
theme_set(theme_minimal())#依據每個ID,劃出月經來潮前,年紀和體脂率的關係
ggplot(subset(dta, Menarche=="F"), #Menarche=="F"月經還沒來
       aes(Time, PBF, group=ID)) + 
 #geom_point(col=8)+
 geom_line(col=8)+
 stat_smooth(aes(group=1),method='lm',formula=y~x)+
 labs(x="Age (in year)",
      y="% Body fat")# baseline model if you want one
mb_0 <- lmer(PBF ~ Time + (1 | ID), data = subset(dta, Menarche=='F')) #(1 | ID)是隨機截距項
tab_model(mb_0)| PBF | |||
|---|---|---|---|
| Predictors | Estimates | CI | p | 
| (Intercept) | 20.20 | 19.06 – 21.34 | <0.001 | 
| Time | -0.09 | -0.33 – 0.16 | 0.494 | 
| Random Effects | |||
| σ2 | 10.02 | ||
| τ00 ID | 43.81 | ||
| ICC | 0.81 | ||
| N ID | 162 | ||
| Observations | 497 | ||
| Marginal R2 / Conditional R2 | 0.000 / 0.814 | ||
mb_0結果解釋:
1.在月經來之前,全部受試者平均體脂率為20.20,信賴區間為19.06 – 21.34。
2.月經來之前,Time與PBF為負向關係。
ggplot(subset(dta, Menarche=="T"), #Menarche=="T"月經來之後
       aes(Time, PBF, group=ID)) +
# geom_point()+
 geom_line(col=8)+
 stat_smooth(aes(group=1),method='lm',formula=y~x)+
 labs(x="Age (in year)",
      y="% Body fat")ma_0 <- lmer(PBF ~ Time + (Time | ID), data=subset(dta, Menarche=='T'))
tab_model(ma_0)| PBF | |||
|---|---|---|---|
| Predictors | Estimates | CI | p | 
| (Intercept) | 22.59 | 21.42 – 23.75 | <0.001 | 
| Time | 1.97 | 1.68 – 2.25 | <0.001 | 
| Random Effects | |||
| σ2 | 7.82 | ||
| τ00 ID | 46.21 | ||
| τ11 ID.Time | 1.42 | ||
| ρ01 ID | -0.55 | ||
| ICC | 0.82 | ||
| N ID | 160 | ||
| Observations | 552 | ||
| Marginal R2 / Conditional R2 | 0.123 / 0.844 | ||
解釋: 1.月經來之後,受試者平均體脂率為22.59,信賴區間為21.42 – 23.75
2.月經來之後,Time和PBF為正向關係,Time增加一單位,PBF增加1.97%
#X軸為每個受試者截距,Y軸為斜率,看看兩者之間的pattern
betas_a <- na.omit(coef(lmList(PBF ~ Time | ID, data=subset(dta, Menarche=='T'))))
car::dataEllipse(betas_a[,1],betas_a[,2])## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4m4 <- lmer(PBF ~ Time + Time_a + (Time + Time_a | ID), data=dta) 
dta_full <- dta %>% 
  mutate(yhat = fitted(m4))# individual connected lines different color for before and after
# add group regression lines
ggplot(dta_full, aes(Time, yhat, color = Menarche)) +
 geom_line(aes(group = ID)) +
 #geom_point(alpha = 0.5) +
 #stat_smooth(method="lm", aes(group = Menarche)) +
 guides(color = F) +
 labs(x = "Age relative to menarche (in years)", 
      y = "Percent body fat")# model with 3 random effects associated with an individual
summary(m1 <- lmer(PBF ~ Time + Time_a + (Time + Time_a | ID), data = dta))## Linear mixed model fit by REML ['lmerMod']
## Formula: PBF ~ Time + Time_a + (Time + Time_a | ID)
##    Data: dta
## 
## REML criterion at convergence: 6062.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7742 -0.5901 -0.0359  0.5947  3.3798 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr       
##  ID       (Intercept) 45.940   6.778               
##           Time         1.631   1.277     0.29      
##           Time_a       2.749   1.658    -0.54 -0.83
##  Residual              9.473   3.078               
## Number of obs: 1049, groups:  ID, 162
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  21.3614     0.5645  37.838
## Time          0.4171     0.1572   2.654
## Time_a        2.0471     0.2280   8.980
## 
## Correlation of Fixed Effects:
##        (Intr) Time  
## Time    0.351       
## Time_a -0.515 -0.872# baseline model if you want one
summary(m0 <- lmer(PBF ~ Time + (Time | ID), data=dta))## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00354498 (tol = 0.002, component 1)## Linear mixed model fit by REML ['lmerMod']
## Formula: PBF ~ Time + (Time | ID)
##    Data: dta
## 
## REML criterion at convergence: 6196.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7577 -0.5961  0.0221  0.6169  3.0981 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  ID       (Intercept) 38.2178  6.1821        
##           Time         0.6938  0.8329   -0.24
##  Residual             11.6215  3.4090        
## Number of obs: 1049, groups:  ID, 162
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 23.04978    0.49985   46.11
## Time         1.55480    0.08484   18.33
## 
## Correlation of Fixed Effects:
##      (Intr)
## Time -0.199
## convergence code: 0
## Model failed to converge with max|grad| = 0.00354498 (tol = 0.002, component 1)# estimate random effects by simulation
m1_re <- REsim(m1)# plot for random effects
plotREsim(m1_re)# residual plot
plot(m1, resid(., type = "pearson") ~ fitted(.),
     abline = 0, pch = 20, cex = .8, id = 0.05,
     xlab = "Ftted values", ylab = "Pearson Residuals")```