Data 605 HW8

library(knitr)
library(rmdformats)

## Global options
options(max.print="81")
opts_chunk$set(
                 cache=TRUE,
               prompt=FALSE,
               tidy=TRUE,
               comment=NA,
               message=FALSE,
               warning=FALSE)
opts_knit$set(width=31)

Exercise 7.11

A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out? (See Exercise 10.)

Ans:

Let X1, X2, . . . , Xn be n independent random variables each of which has an exponential density with mean \(\mu\), the minimum value the Xj, M, is of exponential density function with mean \(\frac{\mu}{n}\).

In this case μ=1000 hours and n=100 so the expected time for the first of these bulbs to burn out is 1000/100=10 hours with the formula given above.

Exercise 7.14

Assume that X1 and X2 are independent random variables, each having an exponential density with parameter . Show that Z = X1 - X2 has density

         \(f{_{Z}}(z) = (\frac{1}{2})\lambda\exp^{-\lambda\left | z \right |}\)

Ans:

Since both X1 and X2 are independent random variables, the distribution of X1 - X2 is equivalent to the distribution of X2 - X1 except with a sign change.

To start, let’s evaluate when X2 \(\geq\) X1,

\[ \begin{multline*} \begin{split} f{_{Z}}(z) &= \int_{-\infty }^{\infty } f{_{x_1}}(z+x_2)f_{x_2}(x_2)dx_2 \\ & = \int_{-\infty }^{0 } \lambda\exp^{-\lambda(z+x_2)}\lambda\exp^{-\lambda x_2}dx_2 \\ &= \int_{-\infty }^{0 } \lambda\exp^{-\lambda z} \lambda\exp^{-2\lambda x_2}dx_2 \\ &= \int_{-\infty }^{0 } \lambda\exp^{-\lambda z} \lambda\exp^{-2\lambda x_2}dx_2 \\ &= \lambda^{2}exp^{-\lambda z} (\int_{-\infty }^{0} \exp^{-2\lambda x_2}dx_2 ) \\ &= \lambda^{2}exp^{-\lambda z} \frac{-1}{2\lambda} \\ &= \frac{-\lambda}{2} exp^{-\lambda z} \end{split} \end{multline*} \]

\(f{_{Z}}(z) =\left\{\begin{matrix}\frac{-\lambda}{2} \exp^{-\lambda z} & z < 0 \\ \frac{\lambda}{2} \exp^{-\lambda z} & z >= 0\end{matrix}\right.\)

Then we proved that \(f(z) = \frac{\lambda}{2}\exp^{-\lambda \left | z \right |}\)

Exercise 1 (p. 320-321)

Let X be a continuous random variable with mean \(\mu\) = 10 and variance \(\sigma^2\) = 100/3. Using Chebyshev’s Inequality, find an upper bound for the following probabilities.

\(P(|X - \mu| \geq \epsilon ) \leq \frac{\sigma^2}{\epsilon^2}\)

(a) P(|X - 10| \(\geq\) 2).

Ans: Let’s define \(\epsilon\) = 2, we get P(|X - 10| \(\geq\) 2) \(\leq \frac{100/3}{2^2} = \frac{25}{3}\)

(b) P(|X - 10| \(\geq\) 5).

Ans: Let’s define \(\epsilon\) = 5, we get P(|X - 10| \(\geq\) 5) \(\leq \frac{100/3}{5^2} = \frac{4}{3}\)

(c) P(|X - 10| \(\geq\) 9).

Ans: Let’s define \(\epsilon\) = 9, we get P(|X - 10| \(\geq\) 9) \(\leq \frac{100/3}{9^2} = \frac{100}{243}\)

(d) P(|X - 10| \(\geq\) 20).

Ans: Let’s define \(\epsilon\) = 20, we get P(|X - 10| \(\geq\) 20) \(\leq \frac{100/3}{20^2} = \frac{1}{12}\)