Data Management
dta3<-read.table("C:/Users/ASUS/Desktop/data/alcohol_use.txt",header=T)
head(dta3)
## sid coa sex age14 alcuse peer cpeer ccoa
## 1 1 1 0 0 1.73205 1.26491 0.24691 0.549
## 2 1 1 0 1 2.00000 1.26491 0.24691 0.549
## 3 1 1 0 2 2.00000 1.26491 0.24691 0.549
## 4 2 1 1 0 0.00000 0.89443 -0.12357 0.549
## 5 2 1 1 1 0.00000 0.89443 -0.12357 0.549
## 6 2 1 1 2 1.00000 0.89443 -0.12357 0.549
dta3$sid <- factor(dta3$sid)
dta3$coa <- factor(dta3$coa)
dta3$sex <- factor(dta3$sex, 0:1, labels = c("F", "M"))
Analysis n Output
library(lme4)
## Loading required package: Matrix
m0 <- lmer(alcuse ~ coa + peer + age14 + peer*age14 + ( 1 |sid), dta3, REML=FALSE)
summary(m0)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: alcuse ~ coa + peer + age14 + peer * age14 + (1 | sid)
## Data: dta3
##
## AIC BIC logLik deviance df.resid
## 620.5 645.0 -303.2 606.5 239
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.3210 -0.6694 -0.0541 0.5612 2.6356
##
## Random effects:
## Groups Name Variance Std.Dev.
## sid (Intercept) 0.3214 0.5669
## Residual 0.4765 0.6903
## Number of obs: 246, groups: sid, 82
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.31177 0.16970 -1.837
## coa1 0.56513 0.15585 3.626
## peer 0.69586 0.13028 5.341
## age14 0.42469 0.09289 4.572
## peer:age14 -0.15138 0.07435 -2.036
##
## Correlation of Fixed Effects:
## (Intr) coa1 peer age14
## coa1 -0.310
## peer -0.726 -0.133
## age14 -0.547 0.000 0.465
## peer:age14 0.446 0.000 -0.571 -0.814