knitr::opts_chunk$set(echo = TRUE)
rm(list=ls())
library(readxl)
Datos_NaEl <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/Base de datos Salinidad + Brassinoesteroides.xlsx")
Datos_NaEl

#1.1 Anova para variable temperatura

m1 <- aov(Temp~Trat, data = Datos_NaEl)
anova(m1)

#1.2 Pueba normaliada para temperatura

shapiro.test(resid(m1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m1)
## W = 0.98373, p-value = 0.9862

#1.3 Prueba de homogeneidad de varianza para temp

library(car)
## Warning: package 'car' was built under R version 4.0.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.0.3
library(carData)
leveneTest(Datos_NaEl$Temp~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#1.4 prueba de comparacion de promedio tukey

library(agricolae)
## Warning: package 'agricolae' was built under R version 4.0.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.3
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
m1tukey <-HSD.test(Datos_NaEl$Temp,Datos_NaEl$Trat, 12, 1.079, alpha = 0.05)
m1tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     1.079 12 19.88125 5.224768 2.180678
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$Temp       std r  Min  Max    Q25   Q50    Q75
## T1          18.225 0.6800735 4 17.3 18.9 17.975 18.35 18.600
## T2          21.950 0.9882645 4 20.9 23.1 21.275 21.90 22.575
## T3          18.350 0.7416198 4 17.4 19.2 18.075 18.40 18.675
## T4          21.000 1.5253415 4 19.3 22.8 20.050 20.95 21.900
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$Temp groups
## T2          21.950      a
## T4          21.000      a
## T3          18.350      b
## T1          18.225      b
## 
## attr(,"class")
## [1] "group"

#2.1 anova para E.abiertos

e1 <- aov(E_abierto~Trat, data = Datos_NaEl)
anova(e1)

#2.2 normalidad para E. abiertos

shapiro.test(resid(e1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(e1)
## W = 0.92462, p-value = 0.2001

#2.3 prueva de levene para E. abiertos

leveneTest(Datos_NaEl$E_abierto~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#2.4 prueba de tukey

e1tukey <-HSD.test(Datos_NaEl$E_abierto,Datos_NaEl$Trat, 12, 1.729, alpha = 0.05)
e1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     1.729 12 6.5625 20.03679 2.760439
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$E_abierto       std r Min Max  Q25  Q50   Q75
## T1                10.00 2.1602469 4   7  12 9.25 10.5 11.25
## T2                 4.00 0.8164966 4   3   5 3.75  4.0  4.25
## T3                 8.25 0.9574271 4   7   9 7.75  8.5  9.00
## T4                 4.00 0.8164966 4   3   5 3.75  4.0  4.25
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$E_abierto groups
## T1                10.00      a
## T3                 8.25      a
## T2                 4.00      b
## T4                 4.00      b
## 
## attr(,"class")
## [1] "group"

#3.1 anova E. cerrados

p1 <- aov(E_cerrado~Trat, data = Datos_NaEl)
anova(p1)

#3.2 normalidad E. cerrados

shapiro.test(resid(p1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(p1)
## W = 0.97137, p-value = 0.8603

#3.3 H. varianza E. cerrados

leveneTest(Datos_NaEl$E_cerrado~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#3.4 Tukey para E. cerrados

p1tukey <-HSD.test(Datos_NaEl$E_cerrado,Datos_NaEl$Trat, 12, 5.125, alpha = 0.05)
p1tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     5.125 12 29.375 7.706711 4.752561
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$E_cerrado      std r Min Max   Q25  Q50   Q75
## T1                26.25 3.403430 4  23  31 24.50 25.5 27.25
## T2                31.50 1.290994 4  30  33 30.75 31.5 32.25
## T3                28.50 2.081666 4  26  31 27.50 28.5 29.50
## T4                31.25 1.707825 4  29  33 30.50 31.5 32.25
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$E_cerrado groups
## T2                31.50      a
## T4                31.25      a
## T3                28.50     ab
## T1                26.25      b
## 
## attr(,"class")
## [1] "group"

#4.1 anova para E. totales

w1 <- aov(E_Total~Trat, data = Datos_NaEl)
anova(w1)

#4.2 normalidad E. totales

shapiro.test(resid(w1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(w1)
## W = 0.92768, p-value = 0.224

#4.3 H. varianza E. totales

leveneTest(Datos_NaEl$E_Total~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#4.4 tukey para E. totales

w1tukey <-HSD.test(Datos_NaEl$E_Total,Datos_NaEl$Trat, 12, 2.6042, alpha = 0.05)
w1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##    2.6042 12 35.9375 4.490444 3.387801
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$E_Total      std r Min Max   Q25  Q50   Q75
## T1              36.25 1.500000 4  35  38 35.00 36.0 37.25
## T2              35.50 1.290994 4  34  37 34.75 35.5 36.25
## T3              36.75 1.892969 4  34  38 36.25 37.5 38.00
## T4              35.25 1.707825 4  33  37 34.50 35.5 36.25
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$E_Total groups
## T3              36.75      a
## T1              36.25      a
## T2              35.50      a
## T4              35.25      a
## 
## attr(,"class")
## [1] "group"

#5.1 anova para CRC

q1 <- aov(CRC~Trat, data = Datos_NaEl)
anova(q1)

#5.2 normalidad para CRC

shapiro.test(resid(q1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(q1)
## W = 0.94647, p-value = 0.4359

#5.3 H. varianza para CRC

leveneTest(Datos_NaEl$CRC~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#5.4 tukey para CRC

q1tukey <-HSD.test(Datos_NaEl$CRC,Datos_NaEl$Trat, 12, 0.839, alpha = 0.05)
q1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     0.839 12 29.6875 3.085371 1.922922
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$CRC       std r  Min  Max    Q25   Q50    Q75
## T1         34.750 0.7852813 4 33.8 35.7 34.400 34.75 35.100
## T2         24.700 0.6683313 4 23.8 25.3 24.400 24.85 25.150
## T3         33.475 1.3793114 4 31.5 34.6 33.075 33.90 34.300
## T4         25.825 0.6238322 4 25.2 26.5 25.350 25.80 26.275
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$CRC groups
## T1         34.750      a
## T3         33.475      a
## T4         25.825      b
## T2         24.700      b
## 
## attr(,"class")
## [1] "group"

#6.1 anova para Area del dosel

k1 <- aov(Area_dosel~Trat, data = Datos_NaEl)
anova(k1)

#6.2 normalidad

shapiro.test(resid(k1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(k1)
## W = 0.89211, p-value = 0.06016

#6.3 H. varianza

leveneTest(Datos_NaEl$Area_dosel~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#6.4 tukey

k1tukey <-HSD.test(Datos_NaEl$Area_dosel,Datos_NaEl$Trat, 12, 8.23, alpha = 0.05)
k1tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##      8.23 12 53.2215 5.390298 6.022553
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$Area_dosel      std r    Min    Max      Q25     Q50      Q75
## T1              59.17000 1.388734 4 57.683 60.459 58.14275 59.2690 60.29625
## T2              45.34025 1.673850 4 43.325 47.423 44.77775 45.3065 45.86900
## T3              58.00200 3.748656 4 52.419 60.231 57.53100 59.6790 60.15000
## T4              50.37375 3.760194 4 45.174 53.851 49.00725 51.2350 52.60150
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$Area_dosel groups
## T1              59.17000      a
## T3              58.00200      a
## T4              50.37375      b
## T2              45.34025      b
## 
## attr(,"class")
## [1] "group"

#7.1 anova para longitud parte aerea

l1 <- aov(PA_Longitud~Trat, data = Datos_NaEl)
anova(l1)

#7.2 normalidad

shapiro.test(resid(l1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(l1)
## W = 0.87853, p-value = 0.03682

#7.3 H. varianza

leveneTest(Datos_NaEl$PA_Longitud~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

#7.4 tukey

l1tukey <-HSD.test(Datos_NaEl$PA_Longitud,Datos_NaEl$Trat, 12, 0.26839, alpha = 0.05)
l1tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##   0.26839 12 6.98 7.422116 1.087587
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$PA_Longitud       std r  Min Max    Q25 Q50   Q75
## T1                 7.5725 0.8942548 4 6.99 8.9 7.0725 7.2 7.700
## T2                 6.2250 0.2362908 4 5.90 6.4 6.1250 6.3 6.400
## T3                 7.3225 0.3022554 4 6.99 7.7 7.1475 7.3 7.475
## T4                 6.8000 0.3559026 4 6.30 7.1 6.6750 6.9 7.025
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$PA_Longitud groups
## T1                 7.5725      a
## T3                 7.3225      a
## T4                 6.8000     ab
## T2                 6.2250      b
## 
## attr(,"class")
## [1] "group"

#8.1 anova N de hojas parte aerea de la planta

n1 <-kruskal(Datos_NaEl$PA_NHojas, Datos_NaEl$Trat, alpha = 0.05)
n1
## $statistics
##   Chisq Df   p.chisq  t.value      MSD
##   5.625  3 0.1313505 2.178813 5.625671
## 
## $parameters
##             test p.ajusted          name.t ntr alpha
##   Kruskal-Wallis      none Datos_NaEl$Trat   4  0.05
## 
## $means
##    Datos_NaEl.PA_NHojas rank       std r Min Max  Q25 Q50 Q75
## T1                 3.75 10.5 0.5000000 4   3   4 3.75 4.0   4
## T2                 3.00  4.5 0.0000000 4   3   3 3.00 3.0   3
## T3                 3.75 10.5 0.5000000 4   3   4 3.75 4.0   4
## T4                 3.50  8.5 0.5773503 4   3   4 3.00 3.5   4
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$PA_NHojas groups
## T1                 10.5      a
## T3                 10.5      a
## T4                  8.5     ab
## T2                  4.5      b
## 
## attr(,"class")
## [1] "group"
h1 <- aov(PA_NHojas~Trat, data = Datos_NaEl)
anova(h1)
shapiro.test(resid(h1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(h1)
## W = 0.8514, p-value = 0.01429
leveneTest(Datos_NaEl$PA_NHojas~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
h1tukey <-HSD.test(Datos_NaEl$PA_NHojas,Datos_NaEl$Trat, 12, 0.20833, alpha = 0.05)
h1tukey
## $statistics
##   MSerror Df Mean       CV       MSD
##   0.20833 12  3.5 13.04091 0.9582011
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$PA_NHojas       std r Min Max  Q25 Q50 Q75
## T1                 3.75 0.5000000 4   3   4 3.75 4.0   4
## T2                 3.00 0.0000000 4   3   3 3.00 3.0   3
## T3                 3.75 0.5000000 4   3   4 3.75 4.0   4
## T4                 3.50 0.5773503 4   3   4 3.00 3.5   4
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$PA_NHojas groups
## T1                 3.75      a
## T3                 3.75      a
## T4                 3.50      a
## T2                 3.00      a
## 
## attr(,"class")
## [1] "group"
n1lsd <-LSD.test(Datos_NaEl$PA_NHojas, Datos_NaEl$Trat, 12, 0.20833, alpha=0.05)
n1lsd
## $statistics
##   MSerror Df Mean       CV  t.value       LSD
##   0.20833 12  3.5 13.04091 2.178813 0.7032032
## 
## $parameters
##         test p.ajusted          name.t ntr alpha
##   Fisher-LSD      none Datos_NaEl$Trat   4  0.05
## 
## $means
##    Datos_NaEl$PA_NHojas       std r     LCL     UCL Min Max  Q25 Q50 Q75
## T1                 3.75 0.5000000 4 3.25276 4.24724   3   4 3.75 4.0   4
## T2                 3.00 0.0000000 4 2.50276 3.49724   3   3 3.00 3.0   3
## T3                 3.75 0.5000000 4 3.25276 4.24724   3   4 3.75 4.0   4
## T4                 3.50 0.5773503 4 3.00276 3.99724   3   4 3.00 3.5   4
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$PA_NHojas groups
## T1                 3.75      a
## T3                 3.75      a
## T4                 3.50     ab
## T2                 3.00      b
## 
## attr(,"class")
## [1] "group"
me <-aov(CRA_Peso_seco~Trat, data = Datos_NaEl)
anova(me)
shapiro.test(resid(me))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(me)
## W = 0.77651, p-value = 0.00135
leveneTest(Datos_NaEl$CRA_Peso_seco~Datos_NaEl$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
metukey <-HSD.test(Datos_NaEl$CRA_Peso_seco,Datos_NaEl$Trat, 12, 6.3333e-08, alpha = 0.05)
metukey
## $statistics
##      MSerror Df    Mean       CV          MSD
##   6.3333e-08 12 0.00125 20.13284 0.0005283184
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_NaEl$Trat   4          4.19866  0.05
## 
## $means
##    Datos_NaEl$CRA_Peso_seco          std r   Min    Max    Q25    Q50     Q75
## T1                  0.00125 0.0002516611 4 9e-04 0.0015 0.0012 0.0013 0.00135
## T2                  0.00125 0.0002516611 4 9e-04 0.0015 0.0012 0.0013 0.00135
## T3                  0.00125 0.0002516611 4 9e-04 0.0015 0.0012 0.0013 0.00135
## T4                  0.00125 0.0002516611 4 9e-04 0.0015 0.0012 0.0013 0.00135
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$CRA_Peso_seco groups
## T1                  0.00125      a
## T2                  0.00125      a
## T3                  0.00125      a
## T4                  0.00125      a
## 
## attr(,"class")
## [1] "group"
me <-kruskal(Datos_NaEl$CRA_Peso_seco, Datos_NaEl$Trat, alpha = 0.05)
me
## $statistics
##   Chisq Df p.chisq  t.value      MSD
##       0  3       1 2.178813 7.547629
## 
## $parameters
##             test p.ajusted          name.t ntr alpha
##   Kruskal-Wallis      none Datos_NaEl$Trat   4  0.05
## 
## $means
##    Datos_NaEl.CRA_Peso_seco rank          std r   Min    Max    Q25    Q50
## T1                  0.00125  8.5 0.0002516611 4 9e-04 0.0015 0.0012 0.0013
## T2                  0.00125  8.5 0.0002516611 4 9e-04 0.0015 0.0012 0.0013
## T3                  0.00125  8.5 0.0002516611 4 9e-04 0.0015 0.0012 0.0013
## T4                  0.00125  8.5 0.0002516611 4 9e-04 0.0015 0.0012 0.0013
##        Q75
## T1 0.00135
## T2 0.00135
## T3 0.00135
## T4 0.00135
## 
## $comparison
## NULL
## 
## $groups
##    Datos_NaEl$CRA_Peso_seco groups
## T1                      8.5      a
## T2                      8.5      a
## T3                      8.5      a
## T4                      8.5      a
## 
## attr(,"class")
## [1] "group"