Getting Started

Load packages

In this lab, we will explore and visualize the data using the tidyverse suite of packages, and perform statistical inference using infer. The data can be found in the companion package for OpenIntro resources, openintro.

Let’s load the packages.

library(tidyverse)
library(openintro)
library(infer)

Creating a reproducible lab report

To create your new lab report, in RStudio, go to New File -> R Markdown… Then, choose From Template and then choose Lab Report for OpenIntro Statistics Labs from the list of templates.

The data

Every two years, the Centers for Disease Control and Prevention conduct the Youth Risk Behavior Surveillance System (YRBSS) survey, where it takes data from high schoolers (9th through 12th grade), to analyze health patterns. You will work with a selected group of variables from a random sample of observations during one of the years the YRBSS was conducted.

Load the yrbss data set into your workspace.

data(yrbss)

There are observations on 13 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:

  1. What are the cases in this data set? How many cases are there in our sample?

Answer

The data set has survey to find risky youth behavior based on whether they text or wear helmet during driving, hours they sleep, hours they watch tv, etc. Total cases in this sample are - 13583

glimpse(yrbss)
## Rows: 13,583
## Columns: 13
## $ age                      <int> 14, 14, 15, 15, 15, 15, 15, 14, 15, 15, 15...
## $ gender                   <chr> "female", "female", "female", "female", "f...
## $ grade                    <chr> "9", "9", "9", "9", "9", "9", "9", "9", "9...
## $ hispanic                 <chr> "not", "not", "hispanic", "not", "not", "n...
## $ race                     <chr> "Black or African American", "Black or Afr...
## $ height                   <dbl> NA, NA, 1.73, 1.60, 1.50, 1.57, 1.65, 1.88...
## $ weight                   <dbl> NA, NA, 84.37, 55.79, 46.72, 67.13, 131.54...
## $ helmet_12m               <chr> "never", "never", "never", "never", "did n...
## $ text_while_driving_30d   <chr> "0", NA, "30", "0", "did not drive", "did ...
## $ physically_active_7d     <int> 4, 2, 7, 0, 2, 1, 4, 4, 5, 0, 0, 0, 4, 7, ...
## $ hours_tv_per_school_day  <chr> "5+", "5+", "5+", "2", "3", "5+", "5+", "5...
## $ strength_training_7d     <int> 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 3, 0, 0, 7, ...
## $ school_night_hours_sleep <chr> "8", "6", "<5", "6", "9", "8", "9", "6", "...
nrow(yrbss)
## [1] 13583

Remember that you can answer this question by viewing the data in the data viewer or by using the following command:

glimpse(yrbss)
## Rows: 13,583
## Columns: 13
## $ age                      <int> 14, 14, 15, 15, 15, 15, 15, 14, 15, 15, 15...
## $ gender                   <chr> "female", "female", "female", "female", "f...
## $ grade                    <chr> "9", "9", "9", "9", "9", "9", "9", "9", "9...
## $ hispanic                 <chr> "not", "not", "hispanic", "not", "not", "n...
## $ race                     <chr> "Black or African American", "Black or Afr...
## $ height                   <dbl> NA, NA, 1.73, 1.60, 1.50, 1.57, 1.65, 1.88...
## $ weight                   <dbl> NA, NA, 84.37, 55.79, 46.72, 67.13, 131.54...
## $ helmet_12m               <chr> "never", "never", "never", "never", "did n...
## $ text_while_driving_30d   <chr> "0", NA, "30", "0", "did not drive", "did ...
## $ physically_active_7d     <int> 4, 2, 7, 0, 2, 1, 4, 4, 5, 0, 0, 0, 4, 7, ...
## $ hours_tv_per_school_day  <chr> "5+", "5+", "5+", "2", "3", "5+", "5+", "5...
## $ strength_training_7d     <int> 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 3, 0, 0, 7, ...
## $ school_night_hours_sleep <chr> "8", "6", "<5", "6", "9", "8", "9", "6", "...

Exploratory data analysis

You will first start with analyzing the weight of the participants in kilograms: weight.

Using visualization and summary statistics, describe the distribution of weights. The summary function can be useful.

summary(yrbss$weight)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   29.94   56.25   64.41   67.91   76.20  180.99    1004
  1. How many observations are we missing weights from?

Answer

Total observations missing weights are 1004

summary(yrbss$weight)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   29.94   56.25   64.41   67.91   76.20  180.99    1004

Next, consider the possible relationship between a high schooler’s weight and their physical activity. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.

First, let’s create a new variable physical_3plus, which will be coded as either “yes” if they are physically active for at least 3 days a week, and “no” if not.

yrbss <- yrbss %>% 
  mutate(physical_3plus = ifelse(yrbss$physically_active_7d > 2, "yes", "no"))
  1. Make a side-by-side boxplot of physical_3plus and weight. Is there a relationship between these two variables? What did you expect and why?

Answer

The plots looks similar with almost same median

boxplot(data = yrbss, weight~physical_3plus, col = 'grey')

The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following to first group the data by the physical_3plus variable, and then calculate the mean weight in these groups using the mean function while ignoring missing values by setting the na.rm argument to TRUE.

yrbss %>%
  group_by(physical_3plus) %>%
  summarise(mean_weight = mean(weight, na.rm = TRUE))
## # A tibble: 3 x 2
##   physical_3plus mean_weight
##   <chr>                <dbl>
## 1 no                    66.7
## 2 yes                   68.4
## 3 <NA>                  69.9

There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test.

Inference

  1. Are all conditions necessary for inference satisfied? Comment on each. You can compute the group sizes with the summarize command above by defining a new variable with the definition n().

Answer

As the sample size is large and assuming the samples are independent its a normal distribution

yrbss %>%
  group_by(physical_3plus) %>%
  summarise(count = n())
## # A tibble: 3 x 2
##   physical_3plus count
##   <chr>          <int>
## 1 no              4404
## 2 yes             8906
## 3 <NA>             273
  1. Write the hypotheses for testing if the average weights are different for those who exercise at least times a week and those who don’t.

Answer

H0 : μexercise - μno exercise = 0

H1 : μexercise - μno exercise ≠ 0

Next, we will introduce a new function, hypothesize, that falls into the infer workflow. You will use this method for conducting hypothesis tests.

But first, we need to initialize the test, which we will save as obs_diff.

obs_diff <- yrbss %>%
  specify(weight ~ physical_3plus) %>%
  calculate(stat = "diff in means", order = c("yes", "no"))

Notice how you can use the functions specify and calculate again like you did for calculating confidence intervals. Here, though, the statistic you are searching for is the difference in means, with the order being yes - no != 0.

After you have initialized the test, you need to simulate the test on the null distribution, which we will save as null.

null_dist <- yrbss %>%
  specify(weight ~ physical_3plus) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  calculate(stat = "diff in means", order = c("yes", "no"))

Here, hypothesize is used to set the null hypothesis as a test for independence. In one sample cases, the null argument can be set to “point” to test a hypothesis relative to a point estimate.

Also, note that the type argument within generate is set to permute, which is the argument when generating a null distribution for a hypothesis test.

We can visualize this null distribution with the following code:

ggplot(data = null_dist, aes(x = stat)) +
  geom_histogram()

  1. How many of these null permutations have a difference of at least obs_stat?

Answer

1000

null_dist %>%
  get_p_value(obs_stat = obs_diff, direction = "two_sided")
## Warning: Please be cautious in reporting a p-value of 0. This result is an
## approximation based on the number of `reps` chosen in the `generate()` step. See
## `?get_p_value()` for more information.
## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1       0
nrow(null_dist)
## [1] 1000

Now that the test is initialized and the null distribution formed, you can calculate the p-value for your hypothesis test using the function get_p_value.

null_dist %>%
  get_p_value(obs_stat = obs_diff, direction = "two_sided")
## Warning: Please be cautious in reporting a p-value of 0. This result is an
## approximation based on the number of `reps` chosen in the `generate()` step. See
## `?get_p_value()` for more information.
## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1       0

This the standard workflow for performing hypothesis tests.

  1. Construct and record a confidence interval for the difference between the weights of those who exercise at least three times a week and those who don’t, and interpret this interval in context of the data.

More Practice

  1. Calculate a 95% confidence interval for the average height in meters (height) and interpret it in context.

  2. Calculate a new confidence interval for the same parameter at the 90% confidence level. Comment on the width of this interval versus the one obtained in the previous exercise.

  3. Conduct a hypothesis test evaluating whether the average height is different for those who exercise at least three times a week and those who don’t.

  4. Now, a non-inference task: Determine the number of different options there are in the dataset for the hours_tv_per_school_day there are.

  5. Come up with a research question evaluating the relationship between height or weight and sleep. Formulate the question in a way that it can be answered using a hypothesis test and/or a confidence interval. Report the statistical results, and also provide an explanation in plain language. Be sure to check all assumptions, state your \(\alpha\) level, and conclude in context.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.