From Question 10, we know that the density for M (minimum of a series of value of a series of independent variables) is exponential with mean µ/n. We know mean = 1000 and n = 100. The exepcted value of the min is equal to the mean of the distribution
1000/100
## [1] 10
We can start with the following PDFs:
\[f(x_1)=λe^{−λx1}\]
\[f(x_2)=λe^{−λx2}\]
\[f(x_1)*f(x_2) = λ2e^{−λ(x_1+x_2)}\]
We know:
\[Z=x_1−x_2\]
\[x_1=Z+x_2\]
Therefore:
\[λ2e−λ((z+x2)+x2)=λ2e−λ(z+2x2)\]
When z is negative
\[∫λ2e^{−λ(z+2x_2)}dx=\frac{λ}{2}e^{λz}\]
When z is positive
\[∫λ2e^{−λ(z+2x2)}dx=\frac{λ}{2}e^{−λ|z|}\]
Therefore, together we have: \[(1/2)λe^{−λ|z|}\]
Chebyshev’s Inequality:
\[P(|X−μ|≥kσ)≤ \frac{1}{k^2}\] μ = 10
σ = (100/3)^(1/2)
2 = k*σ
k = 2/σ
k = 2/((100/3)^(1/2))
1/k^2
## [1] 8.333333
k = 5/σ
k = 5/((100/3)^(1/2))
1/k^2
## [1] 1.333333
k = 9/σ
k = 9/((100/3)^(1/2))
1/k^2
## [1] 0.4115226
k = 5/σ
k = 20/((100/3)^(1/2))
1/k^2
## [1] 0.08333333