#CARGA DE LA MATRIZ A UTILIZAR mat_X
library(readr)
library(kableExtra)
url_link<-"http://halweb.uc3m.es/esp/Personal/personas/agrane/libro/ficheros_datos/capitulo_7/datos_prob_7_3.txt"
mat_X<-read_table2(url_link,col_names = FALSE)
## Parsed with column specification:
## cols(
## X1 = col_double(),
## X2 = col_double(),
## X3 = col_double(),
## X4 = col_double(),
## X5 = col_double(),
## X6 = col_double(),
## X7 = col_double(),
## X8 = col_double()
## )
mat_X %>% head() %>%
kable(caption ="Matriz de información:" ,align = "c",digits = 6) %>%
kable_material(html_font = "sans-serif")
Matriz de información:
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
30
|
41
|
670
|
3903
|
12
|
94
|
341
|
1.2
|
|
124
|
46
|
410
|
955
|
6
|
57
|
89
|
0.5
|
|
95
|
48
|
370
|
6
|
5
|
26
|
20
|
0.1
|
|
90
|
43
|
680
|
435
|
8
|
20
|
331
|
1.6
|
|
112
|
41
|
100
|
1293
|
2
|
51
|
22
|
0.1
|
|
73
|
51
|
390
|
6115
|
4
|
35
|
93
|
0.2
|
Cálculo de V(X)
##cálculo “Manual”
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(kableExtra)
centrado<-function(x){
x-mean(x)
}
Xcentrada<-apply(X = mat_X,MARGIN = 2,centrado)
Xcentrada %>% head() %>%
kable(caption = "Matriz de Variables Centradas:",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif")
Matriz de Variables Centradas:
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
-49.67
|
-0.67
|
303.89
|
1463.5
|
2.94
|
-60.17
|
196.72
|
0.71
|
|
44.33
|
4.33
|
43.89
|
-1484.5
|
-3.06
|
-97.17
|
-55.28
|
0.01
|
|
15.33
|
6.33
|
3.89
|
-2433.5
|
-4.06
|
-128.17
|
-124.28
|
-0.39
|
|
10.33
|
1.33
|
313.89
|
-2004.5
|
-1.06
|
-134.17
|
186.72
|
1.11
|
|
32.33
|
-0.67
|
-266.11
|
-1146.5
|
-7.06
|
-103.17
|
-122.28
|
-0.39
|
|
-6.67
|
9.33
|
23.89
|
3675.5
|
-5.06
|
-119.17
|
-51.28
|
-0.29
|
Número de observaciones
n_obs<-nrow(mat_X)
mat_V<-t(Xcentrada)%*%Xcentrada/(n_obs-1)
mat_V %>% kable(caption ="Cálculo de V(X) forma manual:" ,
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de V(X) forma manual:
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
716.12
|
45.06
|
-2689.61
|
-16082.06
|
-121.63
|
-1019.06
|
-1844.37
|
-5.15
|
|
X2
|
45.06
|
46.94
|
-144.31
|
2756.71
|
-24.63
|
-938.41
|
-205.25
|
-0.42
|
|
X3
|
-2689.61
|
-144.31
|
36389.87
|
123889.71
|
740.82
|
838.33
|
17499.38
|
73.48
|
|
X4
|
-16082.06
|
2756.71
|
123889.71
|
5736372.38
|
3078.97
|
6672.44
|
140343.50
|
412.79
|
|
X5
|
-121.63
|
-24.63
|
740.82
|
3078.97
|
51.47
|
405.58
|
565.22
|
1.59
|
|
X6
|
-1019.06
|
-938.41
|
838.33
|
6672.44
|
405.58
|
26579.56
|
3149.77
|
-2.96
|
|
X7
|
-1844.37
|
-205.25
|
17499.38
|
140343.50
|
565.22
|
3149.77
|
16879.39
|
64.51
|
|
X8
|
-5.15
|
-0.42
|
73.48
|
412.79
|
1.59
|
-2.96
|
64.51
|
0.28
|
#Cálculo con R base
library(dplyr)
library(kableExtra)
cov(mat_X) %>%
kable(caption = "Calculo de V(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("stripped", "hover"))
Calculo de V(X) a través de R base
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
716.12
|
45.06
|
-2689.61
|
-16082.06
|
-121.63
|
-1019.06
|
-1844.37
|
-5.15
|
|
X2
|
45.06
|
46.94
|
-144.31
|
2756.71
|
-24.63
|
-938.41
|
-205.25
|
-0.42
|
|
X3
|
-2689.61
|
-144.31
|
36389.87
|
123889.71
|
740.82
|
838.33
|
17499.38
|
73.48
|
|
X4
|
-16082.06
|
2756.71
|
123889.71
|
5736372.38
|
3078.97
|
6672.44
|
140343.50
|
412.79
|
|
X5
|
-121.63
|
-24.63
|
740.82
|
3078.97
|
51.47
|
405.58
|
565.22
|
1.59
|
|
X6
|
-1019.06
|
-938.41
|
838.33
|
6672.44
|
405.58
|
26579.56
|
3149.77
|
-2.96
|
|
X7
|
-1844.37
|
-205.25
|
17499.38
|
140343.50
|
565.22
|
3149.77
|
16879.39
|
64.51
|
|
X8
|
-5.15
|
-0.42
|
73.48
|
412.79
|
1.59
|
-2.96
|
64.51
|
0.28
|
#Calculo de R(X) Cálculo “Manual”
Zx<-scale(x = mat_X,center = TRUE)
Zx %>% head() %>%
kable(caption = "Matriz de Variables Estandarizadas:",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif")
Matriz de Variables Estandarizadas:
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
-1.86
|
-0.10
|
1.59
|
0.61
|
0.41
|
-0.37
|
1.51
|
1.34
|
|
1.66
|
0.63
|
0.23
|
-0.62
|
-0.43
|
-0.60
|
-0.43
|
0.02
|
|
0.57
|
0.92
|
0.02
|
-1.02
|
-0.57
|
-0.79
|
-0.96
|
-0.73
|
|
0.39
|
0.19
|
1.65
|
-0.84
|
-0.15
|
-0.82
|
1.44
|
2.09
|
|
1.21
|
-0.10
|
-1.39
|
-0.48
|
-0.98
|
-0.63
|
-0.94
|
-0.73
|
|
-0.25
|
1.36
|
0.13
|
1.53
|
-0.70
|
-0.73
|
-0.39
|
-0.54
|
Número de observaciones
n_obs<-nrow(mat_X)
mat_R<-t(Zx)%*%Zx/(n_obs-1)
mat_R %>% kable(caption = "Calculo de R(X) formula manual:" ,
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Calculo de R(X) formula manual:
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
1.00
|
0.25
|
-0.53
|
-0.25
|
-0.63
|
-0.23
|
-0.53
|
-0.36
|
|
X2
|
0.25
|
1.00
|
-0.11
|
0.17
|
-0.50
|
-0.84
|
-0.23
|
-0.12
|
|
X3
|
-0.53
|
-0.11
|
1.00
|
0.27
|
0.54
|
0.03
|
0.71
|
0.73
|
|
X4
|
-0.25
|
0.17
|
0.27
|
1.00
|
0.18
|
0.02
|
0.45
|
0.32
|
|
X5
|
-0.63
|
-0.50
|
0.54
|
0.18
|
1.00
|
0.35
|
0.61
|
0.42
|
|
X6
|
-0.23
|
-0.84
|
0.03
|
0.02
|
0.35
|
1.00
|
0.15
|
-0.03
|
|
X7
|
-0.53
|
-0.23
|
0.71
|
0.45
|
0.61
|
0.15
|
1.00
|
0.93
|
|
X8
|
-0.36
|
-0.12
|
0.73
|
0.32
|
0.42
|
-0.03
|
0.93
|
1.00
|
#Creación y presentación de matriz de correlación usando corrplot # Ejemplo 1
library(corrplot)
## corrplot 0.84 loaded
library(grDevices)
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
type="lower",
tl.col="purple",
tl.srt = 22,
order = "hclust",
pch.col = "black",
insig = "p-value",
sig.level = -1,
method = "circle",
col = c("pink", "green","yellow","blue","orange"), bg = "light blue")

Ejemplo 2
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
method="color",
type="full",
order="FPC",
tl.col="brown",
tl.srt = 18,
pch.col = "blue",
insig = "p-value",
sig.level = -1,
col = heat.colors(100))

Ejemplo 3
blackandred <- c("light blue", "blue")
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,# r es la matriz de correlación
p.mat = Mat_R$r,
method="number",
type="full",
order="hclust",
addrect=3,
tl.col="blue",
tl.srt = 20,
pch.col = "Brown",
insig = "p-value",
sig.level = -1,
col = blackandred)

Ejemplo 4
library(corrplot)
library(grDevices)
library(Hmisc)
col4 <- colorRampPalette(c("#7F0000", "pink", "#FF7F00", "yellow", "#7FFF7F",
"cyan", "#007FFF", "purple", "#00007F"))
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
type="upper",
tl.col="red",
tl.srt = 15,
pch.col = "black",
insig = "p-value",
sig.level = -1,
order = "hclust",
method = "circle",
addrect = 3,
col = col4(100))

Ejemplo 5
col2 <- colorRampPalette(c("#67001F", "#B2182B", "#D6604D", "#F4A582",
"#FDDBC7", "#FFFFFF", "#D1E5F0", "#92C5DE",
"#4393C3", "#2166AC", "#053061"))
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
method="pie",
type="full",
order="hclust",
addrect=2,
tl.col="black",
tl.srt = 22,
pch.col = "Black",
insig = "p-value",
sig.level = -1,
col = col2(80))
