Cálculo de V(X):
Cálculo “Manual”
library(dplyr)
library(kableExtra)
centrado<-function(x){
x-mean(x)
}
Xcentrada<-apply(X = mat_X,MARGIN = 2,centrado)
Xcentrada %>% head() %>%
kable(caption ="Matriz de Variables centradas:",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif")
Matriz de Variables centradas:
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
-49.67
|
-0.67
|
303.89
|
1463.5
|
2.94
|
-60.17
|
196.72
|
0.71
|
|
44.33
|
4.33
|
43.89
|
-1484.5
|
-3.06
|
-97.17
|
-55.28
|
0.01
|
|
15.33
|
6.33
|
3.89
|
-2433.5
|
-4.06
|
-128.17
|
-124.28
|
-0.39
|
|
10.33
|
1.33
|
313.89
|
-2004.5
|
-1.06
|
-134.17
|
186.72
|
1.11
|
|
32.33
|
-0.67
|
-266.11
|
-1146.5
|
-7.06
|
-103.17
|
-122.28
|
-0.39
|
|
-6.67
|
9.33
|
23.89
|
3675.5
|
-5.06
|
-119.17
|
-51.28
|
-0.29
|
n_obs<-nrow(mat_X)
mat_V<-t(Xcentrada)%*%Xcentrada/(n_obs-1)
mat_V %>% kable(caption ="Cálculo de V(X) forma manual:" ,
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de V(X) forma manual:
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
716.12
|
45.06
|
-2689.61
|
-16082.06
|
-121.63
|
-1019.06
|
-1844.37
|
-5.15
|
|
X2
|
45.06
|
46.94
|
-144.31
|
2756.71
|
-24.63
|
-938.41
|
-205.25
|
-0.42
|
|
X3
|
-2689.61
|
-144.31
|
36389.87
|
123889.71
|
740.82
|
838.33
|
17499.38
|
73.48
|
|
X4
|
-16082.06
|
2756.71
|
123889.71
|
5736372.38
|
3078.97
|
6672.44
|
140343.50
|
412.79
|
|
X5
|
-121.63
|
-24.63
|
740.82
|
3078.97
|
51.47
|
405.58
|
565.22
|
1.59
|
|
X6
|
-1019.06
|
-938.41
|
838.33
|
6672.44
|
405.58
|
26579.56
|
3149.77
|
-2.96
|
|
X7
|
-1844.37
|
-205.25
|
17499.38
|
140343.50
|
565.22
|
3149.77
|
16879.39
|
64.51
|
|
X8
|
-5.15
|
-0.42
|
73.48
|
412.79
|
1.59
|
-2.96
|
64.51
|
0.28
|
Cálculo con R base
library(dplyr)
library(kableExtra)
cov(mat_X) %>%
kable(caption="Cálculo de V(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de V(X) a través de R base
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
716.12
|
45.06
|
-2689.61
|
-16082.06
|
-121.63
|
-1019.06
|
-1844.37
|
-5.15
|
|
X2
|
45.06
|
46.94
|
-144.31
|
2756.71
|
-24.63
|
-938.41
|
-205.25
|
-0.42
|
|
X3
|
-2689.61
|
-144.31
|
36389.87
|
123889.71
|
740.82
|
838.33
|
17499.38
|
73.48
|
|
X4
|
-16082.06
|
2756.71
|
123889.71
|
5736372.38
|
3078.97
|
6672.44
|
140343.50
|
412.79
|
|
X5
|
-121.63
|
-24.63
|
740.82
|
3078.97
|
51.47
|
405.58
|
565.22
|
1.59
|
|
X6
|
-1019.06
|
-938.41
|
838.33
|
6672.44
|
405.58
|
26579.56
|
3149.77
|
-2.96
|
|
X7
|
-1844.37
|
-205.25
|
17499.38
|
140343.50
|
565.22
|
3149.77
|
16879.39
|
64.51
|
|
X8
|
-5.15
|
-0.42
|
73.48
|
412.79
|
1.59
|
-2.96
|
64.51
|
0.28
|
Cálculo de R(X)
Cálculo “Manual”
Zx<-scale(x = mat_X,center =TRUE)
Zx %>% head() %>%
kable(caption ="Matriz de Variables Estandarizadas:",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif")
Matriz de Variables Estandarizadas:
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
-1.86
|
-0.10
|
1.59
|
0.61
|
0.41
|
-0.37
|
1.51
|
1.34
|
|
1.66
|
0.63
|
0.23
|
-0.62
|
-0.43
|
-0.60
|
-0.43
|
0.02
|
|
0.57
|
0.92
|
0.02
|
-1.02
|
-0.57
|
-0.79
|
-0.96
|
-0.73
|
|
0.39
|
0.19
|
1.65
|
-0.84
|
-0.15
|
-0.82
|
1.44
|
2.09
|
|
1.21
|
-0.10
|
-1.39
|
-0.48
|
-0.98
|
-0.63
|
-0.94
|
-0.73
|
|
-0.25
|
1.36
|
0.13
|
1.53
|
-0.70
|
-0.73
|
-0.39
|
-0.54
|
n_obs<-nrow(mat_X)
mat_R<-t(Zx)%*%Zx/(n_obs-1)
mat_R %>% kable(caption ="Cálculo de R(X) forma manual:" ,
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de R(X) forma manual:
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
1.00
|
0.25
|
-0.53
|
-0.25
|
-0.63
|
-0.23
|
-0.53
|
-0.36
|
|
X2
|
0.25
|
1.00
|
-0.11
|
0.17
|
-0.50
|
-0.84
|
-0.23
|
-0.12
|
|
X3
|
-0.53
|
-0.11
|
1.00
|
0.27
|
0.54
|
0.03
|
0.71
|
0.73
|
|
X4
|
-0.25
|
0.17
|
0.27
|
1.00
|
0.18
|
0.02
|
0.45
|
0.32
|
|
X5
|
-0.63
|
-0.50
|
0.54
|
0.18
|
1.00
|
0.35
|
0.61
|
0.42
|
|
X6
|
-0.23
|
-0.84
|
0.03
|
0.02
|
0.35
|
1.00
|
0.15
|
-0.03
|
|
X7
|
-0.53
|
-0.23
|
0.71
|
0.45
|
0.61
|
0.15
|
1.00
|
0.93
|
|
X8
|
-0.36
|
-0.12
|
0.73
|
0.32
|
0.42
|
-0.03
|
0.93
|
1.00
|
Cálculo usando R base
library(dplyr)
library(kableExtra)
cor(mat_X) %>%
kable(caption="Cálculo de R(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de R(X) a través de R base
|
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
|
X1
|
1.00
|
0.25
|
-0.53
|
-0.25
|
-0.63
|
-0.23
|
-0.53
|
-0.36
|
|
X2
|
0.25
|
1.00
|
-0.11
|
0.17
|
-0.50
|
-0.84
|
-0.23
|
-0.12
|
|
X3
|
-0.53
|
-0.11
|
1.00
|
0.27
|
0.54
|
0.03
|
0.71
|
0.73
|
|
X4
|
-0.25
|
0.17
|
0.27
|
1.00
|
0.18
|
0.02
|
0.45
|
0.32
|
|
X5
|
-0.63
|
-0.50
|
0.54
|
0.18
|
1.00
|
0.35
|
0.61
|
0.42
|
|
X6
|
-0.23
|
-0.84
|
0.03
|
0.02
|
0.35
|
1.00
|
0.15
|
-0.03
|
|
X7
|
-0.53
|
-0.23
|
0.71
|
0.45
|
0.61
|
0.15
|
1.00
|
0.93
|
|
X8
|
-0.36
|
-0.12
|
0.73
|
0.32
|
0.42
|
-0.03
|
0.93
|
1.00
|
Versiones gráficas de R(X)
Usando el paquete corrplot
library(corrplot)
library(grDevices)
library(Hmisc)
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
type="upper",
tl.col="black",
tl.srt = 20,
pch.col = "blue",
insig = "p-value",
sig.level = -1,
col = terrain.colors(100))

Ejemplo 2 usando paquete corrplot
library(corrplot)
library(grDevices)
library(Hmisc)
colQ <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F",
"cyan", "#007FFF", "blue", "#00007F"))
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
method = "color",
type="lower",
tl.col="blue",
tl.srt = 17,
pch.col = "white",
insig = "p-value",
sig.level = -1,
col = colQ(100))

Ejemplo 3 usando paquete corrplot
library(corrplot)
library(grDevices)
library(Hmisc)
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
method = "shade",
type="full",
tl.col="red",
tl.srt = 17,
pch.col = "black",
insig = "p-value",
sig.level = -1,
col = heat.colors(100))

Ejemplo 4 usando paquete corrplot
library(corrplot)
library(grDevices)
library(Hmisc)
col1 <- colorRampPalette(c("#67001F", "#B2182B", "#D6604D", "#F4A582",
"#FDDBC7", "#FFFFFF", "#D1E5F0", "#92C5DE",
"#4393C3", "#2166AC", "#053061"))
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
method = "ellipse",
is.corr = FALSE,
type="full",
tl.col="black",
tl.srt = 20,
pch.col = "blue",
insig = "p-value",
sig.level = -1,
order = "hclust",
addrect = 2,
col = col1(100))

Ejemplo 5 usando paquete “corrplot”
library(corrplot)
library(grDevices)
library(Hmisc)
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
method = "ellipse",
type="upper",
order = "hclust",
col= c("yellow","white"),bg="lightblue",
insig = "p-value",
sig.level = -1)
