i<-0:11
time<-c(0,2,3,4,21,24,24,27,51,51,60,72)
cc<-c(0,1,1,1,0,1,1,1,1,0,1,1)
ni<-c(11,11,10,9,NA,NA,7,5,4,NA,2,1)
di<-c(0,1,1,1,NA,NA,2,1,1,NA,1,1)
survival::Surv(time[-1],cc[-1])## [1] 2 3 4 21+ 24 24 27 51 51+ 60 72
\[\text{comp01}=\frac{d_i}{n_i(n_i-d_i)}\]
\[\sum\limits_{t_{(i)}\leq t}\frac{d_i}{n_i(n_i-d_i)}\]
\[\widehat{S}(t)=\prod\limits_{t_{(i)}\leq t}\left(1-\frac{d_i}{n_i}\right)\]
\[Var[\widehat{S}(t)]=\widehat{S}^2(t)\sum\limits_{t_{(i)}\leq t}\frac{d_i}{n_i(n_i-d_i)}\]
\[\begin{eqnarray*} EE(\widehat{S}(t))&=&\sqrt{Var[\widehat{S}(t)]}\\ &=&\sqrt{\widehat{S}^2(t)\sum\limits_{t_{(i)}\leq t}\frac{d_i}{n_i(n_i-d_i)}}\\ &=&\widehat{S}(t)\sqrt{\sum\limits_{t_{(i)}\leq t}\frac{d_i}{n_i(n_i-d_i)}} \end{eqnarray*}\]
\[[\widehat{S}(t)-Z_{1-\alpha/2}\times EE(\widehat{S}(t)), \widehat{S}(t)+Z_{1-\alpha/2}\times EE(\widehat{S}(t))]\]
\[[\widehat{S}(t)^{\frac{1}{\theta}}, \widehat{S}(t)^{\theta}]\] \[\theta=\exp(A),\,\frac{1}{\theta}=\frac{1}{\exp(A)}=\exp(-A)=\] \[\begin{eqnarray*} A &=& Z_{1-\alpha/2}\times \sqrt{Var(\widehat{L}(t))}\\ &=& Z_{1-\alpha/2}\times \sqrt{Var(\log[-\log\widehat{S}(t)])}\\ &=& Z_{1-\alpha/2}\times \sqrt{ \frac{1}{\log\widehat{S}^2(t)}\sum\limits_{t_{(i)}\leq t}\frac{d_i}{n_i(n_i-d_i) }}\\ &=&Z_{1-\alpha/2}\times \frac{1}{\log\widehat{S}(t)}\sqrt{ \sum\limits_{t_{(i)}\leq t}\frac{d_i}{n_i(n_i-d_i) }} \end{eqnarray*}\]
La cota inferior del intervalo de confianza para \(L(t)\) es \(\widehat{L}(t)-A\), la cota para \(\widehat{S}(t)\) se obtiene aplicando dos veces la función inversa de \(\log\)
\[\begin{eqnarray*} \exp(-\exp[\widehat{L}(t)-A])&=&\exp[-(\exp[\widehat{L}(t)]\times\exp[-A])]=\exp(-\exp[\widehat{L}(t)])^{\exp[-A]}\\ &=&\exp(-\exp[\widehat{L}(t)])^{\frac{1}{\theta}}\\ &=&\exp(-\exp[\log[-\log\widehat{S}(t)]])^{\frac{1}{\theta}}\\ &=&\widehat{S}(t)^{\frac{1}{\theta}} \end{eqnarray*}\]
library(survival)
library(survminer)
Resumen.R.plane<-
surv_summary(survfit(Surv(time[-1],cc[-1])~1, conf.type="plain", conf.int=0.95))
Resumen.R.log.log<-
surv_summary(survfit(Surv(time[-1],cc[-1])~1, conf.type="log-log",conf.int=0.95))
library(knitr)
kable(Resumen.intervalos[,1:10])| i | time | cc | ni | di | comp01 | suma.acumulada | S.hat.t | Var.S.t | Raiz_Var.S.t |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 11 | 0 | 0.0000000 | 0.0000000 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1 | 2 | 1 | 11 | 1 | 0.0090909 | 0.0090909 | 0.9090909 | 0.0075131 | 0.0866784 |
| 2 | 3 | 1 | 10 | 1 | 0.0111111 | 0.0202020 | 0.8181818 | 0.0135237 | 0.1162913 |
| 3 | 4 | 1 | 9 | 1 | 0.0138889 | 0.0340909 | 0.7272727 | 0.0180316 | 0.1342816 |
| 4 | 21 | 0 | NA | NA | 0.0000000 | 0.0340909 | 0.7272727 | 0.0180316 | 0.1342816 |
| 5 | 24 | 1 | NA | NA | 0.0000000 | 0.0340909 | 0.7272727 | 0.0180316 | 0.1342816 |
| 6 | 24 | 1 | 7 | 2 | 0.0571429 | 0.0912338 | 0.5194805 | 0.0246203 | 0.1569087 |
| 7 | 27 | 1 | 5 | 1 | 0.0500000 | 0.1412338 | 0.4155844 | 0.0243925 | 0.1561811 |
| 8 | 51 | 1 | 4 | 1 | 0.0833333 | 0.2245671 | 0.3116883 | 0.0218166 | 0.1477045 |
| 9 | 51 | 0 | NA | NA | 0.0000000 | 0.2245671 | 0.3116883 | 0.0218166 | 0.1477045 |
| 10 | 60 | 1 | 2 | 1 | 0.5000000 | 0.7245671 | 0.1558442 | 0.0175979 | 0.1326569 |
| 11 | 72 | 1 | 1 | 1 | 0.0000000 | 0.7245671 | 0.0000000 | 0.0000000 | 0.0000000 |
| Intervalo_sup_norm | Intervalo_inf_norm | Intervalo_sup_loglog | Intervalo_inf_loglog |
|---|---|---|---|
| 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 |
| 1.0789775 | 0.7392043 | 0.9866738 | 0.5080802 |
| 1.0461086 | 0.5902551 | 0.9511622 | 0.4474286 |
| 0.9904599 | 0.4640856 | 0.9028331 | 0.3707874 |
| 0.9904599 | 0.4640856 | 0.9028331 | 0.3707874 |
| 0.9904599 | 0.4640856 | 0.9028331 | 0.3707874 |
| 0.8270160 | 0.2119451 | 0.7670301 | 0.1984541 |
| 0.7216938 | 0.1094751 | 0.6842000 | 0.1311243 |
| 0.6011837 | 0.0221929 | 0.5912491 | 0.0753225 |
| 0.6011837 | 0.0221929 | 0.5912491 | 0.0753225 |
| 0.4158469 | -0.1041586 | 0.4687583 | 0.0104546 |
| 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 |
| time | n.risk | n.event | n.censor | surv | std.err | upper | lower |
|---|---|---|---|---|---|---|---|
| 2 | 11 | 1 | 0 | 0.9090909 | 0.0953463 | 1.0000000 | 0.7392043 |
| 3 | 10 | 1 | 0 | 0.8181818 | 0.1421338 | 1.0000000 | 0.5902551 |
| 4 | 9 | 1 | 0 | 0.7272727 | 0.1846372 | 0.9904599 | 0.4640856 |
| 21 | 8 | 0 | 1 | 0.7272727 | 0.1846372 | 0.9904599 | 0.4640856 |
| 24 | 7 | 2 | 0 | 0.5194805 | 0.3020493 | 0.8270160 | 0.2119451 |
| 27 | 5 | 1 | 0 | 0.4155844 | 0.3758108 | 0.7216938 | 0.1094751 |
| 51 | 4 | 1 | 1 | 0.3116883 | 0.4738851 | 0.6011837 | 0.0221929 |
| 60 | 2 | 1 | 0 | 0.1558442 | 0.8512151 | 0.4158469 | 0.0000000 |
| 72 | 1 | 1 | 0 | 0.0000000 | Inf | NaN | NaN |
| time | n.risk | n.event | n.censor | surv | std.err | upper | lower |
|---|---|---|---|---|---|---|---|
| 2 | 11 | 1 | 0 | 0.9090909 | 0.0953463 | 0.9866738 | 0.5080802 |
| 3 | 10 | 1 | 0 | 0.8181818 | 0.1421338 | 0.9511622 | 0.4474286 |
| 4 | 9 | 1 | 0 | 0.7272727 | 0.1846372 | 0.9028331 | 0.3707874 |
| 21 | 8 | 0 | 1 | 0.7272727 | 0.1846372 | 0.9028331 | 0.3707874 |
| 24 | 7 | 2 | 0 | 0.5194805 | 0.3020493 | 0.7670301 | 0.1984541 |
| 27 | 5 | 1 | 0 | 0.4155844 | 0.3758108 | 0.6842000 | 0.1311243 |
| 51 | 4 | 1 | 1 | 0.3116883 | 0.4738851 | 0.5912491 | 0.0753225 |
| 60 | 2 | 1 | 0 | 0.1558442 | 0.8512151 | 0.4687583 | 0.0104546 |
| 72 | 1 | 1 | 0 | 0.0000000 | Inf | NA | NA |
st.err de survival calcula el error estándar de
la función acumulativa de riesgo es decir \[\widehat{H}(t)=\log(-\widehat{S}(t))=\sum\limits_{t_{(i)}\leq
t}\log \left[\frac{d_i}{n_i(n_i-d_i)}\right]\] \[Var(\widehat{H}(t))=\sum\limits_{t_{(i)}\leq t}
\frac{d_i}{n_i(n_i-d_i)}\] \[std.err=\sqrt{Var(\widehat{H}(t))}=\sqrt{\sum\limits_{t_{(i)}\leq
t} \frac{d_i}{n_i(n_i-d_i)}}\]
## [1] 0.00000000 0.09534626 0.14213381 0.18463724 0.18463724 0.18463724
## [7] 0.30204928 0.37581081 0.47388511 0.47388511 0.85121507 0.85121507
par(mfrow=c(2,2))
plot(time, S.hat.t, type="s", xaxt="n", ylab = "S(t)")
axis(1,at=time, labels=time, cex.axis=1, las=1 )
title(main=bquote("95% IC estándar, normalidad"~hat(S)~"(t)"))
lines(time,Intervalo_sup_norm, type="s", lty=4, col="red")
lines(time,Intervalo_inf_norm, type="s", lty=4, col="red")
plot(time, S.hat.t, type="s", xaxt="n", ylab = "S(t)")
axis(1,at=time, labels=time, cex.axis=1, las=1 )
title(main=bquote("95% IC transformados log-log"))
lines(time,Intervalo_inf_loglog, type="s", lty=3, col="blue")
lines(time,Intervalo_sup_loglog, type="s", lty=3, col="blue")
plot(survfit(Surv(time,cc)~1, conf.type="plain", conf.int=0.95), xaxt="n", ylab = "S(t)" , col = "green")
axis(1,at=time, labels=time, cex.axis=1, las=1 )
title(main=bquote("95% IC estándar, normalidad"~hat(S)~"(t), R Survival"))
plot(survfit(Surv(time,cc)~1, conf.type="log-log", conf.int=0.95), xaxt="n", ylab = "S(t)", col = "gray")
axis(1,at=time, labels=time, cex.axis=1, las=1 )
title(main=bquote("95% IC transformados log-log, log-log R survival"))