Loading the package and making a dataframe from the Worldbank Data of the South Asian Countries

library(WDI)
library(pander)

X <- WDI(country = c('BD','IN','BT','NP','PK','LK','AF'),
indicator = c("SP.DYN.LE00.IN","SP.DYN.IMRT.IN", "NY.GDP.PCAP.PP.KD" ,
              "SH.MED.BEDS.ZS","SH.MED.PHYS.ZS","SH.MED.NUMW.P3"),
start = 2000,end = 2019)

Removing the NA values and replacing the variable names

X <- X[complete.cases(X), ]

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
X <- rename_all(X,recode,SP.DYN.LE00.IN="LEB",
SP.DYN.IMRT.IN = "IMR",
NY.GDP.PCAP.PP.KD = "GDP",
SH.MED.BEDS.ZS="HB",
SH.MED.PHYS.ZS="PY",
SH.MED.NUMW.P3="NM")

# LEB = Life Expectancy at birth (total years)
# IMR = Infant Mortality Ratio(per 1000 live births) 
# GDP = GDP per capita measured at 2017 international $
# HB  = Hospital Beds per 1000 people
# PY  = Physicians per 1000 people
# NM  = Nurses and Midwives per 1000 people

pander(head(X))
  iso2c country year LEB IMR GDP HB PY NM
7 AF Afghanistan 2006 58.83 74.3 1408 0.4 0.1596 0.44
8 AF Afghanistan 2007 59.38 71.7 1563 0.4 0.1743 0.4956
9 AF Afghanistan 2008 59.93 69 1588 0.4 0.1744 0.4971
10 AF Afghanistan 2009 60.48 66.5 1882 0.4 0.2126 0.6078
14 AF Afghanistan 2013 62.52 57.2 2264 0.5 0.2846 0.2495
15 AF Afghanistan 2014 62.97 55.2 2249 0.5 0.2983 0.1476

Regression life expectancy at birth on health infrastructure

fit1 <- lm (X$`LEB`
           ~ X$`HB`
           +X$`PY`
           +X$`NM`)
summary(fit1)
## 
## Call:
## lm(formula = X$LEB ~ X$HB + X$PY + X$NM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9176 -1.7676 -0.5887  0.5407  6.4220 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  60.8470     1.4447  42.118  < 2e-16 ***
## X$HB          3.4878     0.7871   4.431  0.00014 ***
## X$PY          3.9854     2.3341   1.707  0.09921 .  
## X$NM         -0.3059     1.5911  -0.192  0.84899    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.981 on 27 degrees of freedom
## Multiple R-squared:  0.6247, Adjusted R-squared:  0.583 
## F-statistic: 14.98 on 3 and 27 DF,  p-value: 6.161e-06
library(broom)

tidy(fit1)
glance(fit1)

Regressing infant mortality rate on health infrastructure

fit2 <- lm (X$`IMR`
           ~ X$`HB`
           +X$`PY`
           +X$`NM`)
summary(fit2)
## 
## Call:
## lm(formula = X$IMR ~ X$HB + X$PY + X$NM)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.5693  -4.0172   0.5575   8.1405  23.0249 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   61.509      6.850   8.979 1.36e-09 ***
## X$HB         -16.230      3.732  -4.349 0.000175 ***
## X$PY          21.445     11.068   1.938 0.063197 .  
## X$NM          -6.180      7.545  -0.819 0.419901    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.13 on 27 degrees of freedom
## Multiple R-squared:  0.6604, Adjusted R-squared:  0.6227 
## F-statistic:  17.5 on 3 and 27 DF,  p-value: 1.64e-06
tidy(fit2)
glance(fit2)

Regressing GDP Per Capita on health infrastructure

fit3 <- lm (X$`GDP`
           ~ X$`HB`
           +X$`PY`
           +X$`NM`)
summary(fit3)
## 
## Call:
## lm(formula = X$GDP ~ X$HB + X$PY + X$NM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1434.0  -353.5   -68.4   150.8  4472.4 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    715.0      514.9   1.389  0.17633    
## X$HB          1761.5      280.5   6.279 1.02e-06 ***
## X$PY          2387.5      831.9   2.870  0.00789 ** 
## X$NM           230.5      567.1   0.407  0.68757    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1062 on 27 degrees of freedom
## Multiple R-squared:  0.8007, Adjusted R-squared:  0.7785 
## F-statistic: 36.15 on 3 and 27 DF,  p-value: 1.346e-09
tidy(fit3)
glance(fit3)

Pearson Correlation Table

library(picante)
## Loading required package: ape
## Loading required package: vegan
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-6
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
X[1:3] <- NULL

pearson <- cor.table(X,cor.method = "pearson",cor.type = "standard")

panderOptions("table.style", "grid")
pander(pearson$r)
  LEB IMR GDP HB PY NM
LEB 1 -0.8841 0.788 0.7643 0.2983 0.5615
IMR -0.8841 1 -0.6789 -0.7808 0.1021 -0.6091
GDP 0.788 -0.6789 1 0.857 0.3645 0.6738
HB 0.7643 -0.7808 0.857 1 0.1306 0.7277
PY 0.2983 0.1021 0.3645 0.1306 1 0.1978
NM 0.5615 -0.6091 0.6738 0.7277 0.1978 1

Spearman Correlation Table

spearman <- cor.table(X,cor.method = "spearman",cor.type ="standard")

pander(spearman$r)
  LEB IMR GDP HB PY NM
LEB 1 -0.8089 0.7802 0.5996 0.3206 0.3794
IMR -0.8089 1 -0.4694 -0.4447 0.1488 -0.3367
GDP 0.7802 -0.4694 1 0.7815 0.6101 0.5153
HB 0.5996 -0.4447 0.7815 1 0.3573 0.5097
PY 0.3206 0.1488 0.6101 0.3573 1 0.2125
NM 0.3794 -0.3367 0.5153 0.5097 0.2125 1