Loading the package and making a dataframe from the Worldbank Data of the South Asian Countries

library(WDI)
library(pander)

X <- WDI(country = c('BD','IN','BT','NP','PK','LK','AF'),
indicator = c("SP.DYN.LE00.IN","SP.DYN.IMRT.IN", "NY.GDP.PCAP.PP.KD" ,
              "SH.MED.BEDS.ZS","SH.MED.PHYS.ZS","SH.MED.NUMW.P3"),
start = 2000,end = 2019)

Removing the NA values and replacing the variable names

X <- X[complete.cases(X), ]

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
X <- rename_all(X,recode,SP.DYN.LE00.IN="Life Expectancy at birth(total years)",
SP.DYN.IMRT.IN = "Infant Mortality Rate(per 1000 live births)",
NY.GDP.PCAP.PP.KD = "GDP Per Capita,PPP(Constant 2017 international $)",
SH.MED.BEDS.ZS="Hospital Beds per 1000 people",
SH.MED.PHYS.ZS="Physicians per 1000 people",
SH.MED.NUMW.P3="Nurses and Midwives per 1000 people")

pander(head(X))
Table continues below
  iso2c country year Life Expectancy at birth(total years)
7 AF Afghanistan 2006 58.83
8 AF Afghanistan 2007 59.38
9 AF Afghanistan 2008 59.93
10 AF Afghanistan 2009 60.48
14 AF Afghanistan 2013 62.52
15 AF Afghanistan 2014 62.97
Table continues below
  Infant Mortality Rate(per 1000 live births) GDP Per Capita,PPP(Constant 2017 international $)
7 74.3 1408
8 71.7 1563
9 69 1588
10 66.5 1882
14 57.2 2264
15 55.2 2249
Table continues below
  Hospital Beds per 1000 people Physicians per 1000 people
7 0.4 0.1596
8 0.4 0.1743
9 0.4 0.1744
10 0.4 0.2126
14 0.5 0.2846
15 0.5 0.2983
  Nurses and Midwives per 1000 people
7 0.44
8 0.4956
9 0.4971
10 0.6078
14 0.2495
15 0.1476

Regression life expectancy at birth on health infrastructure

fit1 <- lm (X$`Life Expectancy at birth(total years)`
           ~ X$`Hospital Beds per 1000 people`
           +X$`Physicians per 1000 people`
           +X$`Nurses and Midwives per 1000 people`)
summary(fit1)
## 
## Call:
## lm(formula = X$`Life Expectancy at birth(total years)` ~ X$`Hospital Beds per 1000 people` + 
##     X$`Physicians per 1000 people` + X$`Nurses and Midwives per 1000 people`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9176 -1.7676 -0.5887  0.5407  6.4220 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              60.8470     1.4447  42.118  < 2e-16
## X$`Hospital Beds per 1000 people`         3.4878     0.7871   4.431  0.00014
## X$`Physicians per 1000 people`            3.9854     2.3341   1.707  0.09921
## X$`Nurses and Midwives per 1000 people`  -0.3059     1.5911  -0.192  0.84899
##                                            
## (Intercept)                             ***
## X$`Hospital Beds per 1000 people`       ***
## X$`Physicians per 1000 people`          .  
## X$`Nurses and Midwives per 1000 people`    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.981 on 27 degrees of freedom
## Multiple R-squared:  0.6247, Adjusted R-squared:  0.583 
## F-statistic: 14.98 on 3 and 27 DF,  p-value: 6.161e-06
library(broom)

tidy(fit1)
## # A tibble: 4 x 5
##   term                                    estimate std.error statistic  p.value
##   <chr>                                      <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)                               60.8       1.44     42.1   3.63e-26
## 2 X$`Hospital Beds per 1000 people`          3.49      0.787     4.43  1.40e- 4
## 3 X$`Physicians per 1000 people`             3.99      2.33      1.71  9.92e- 2
## 4 X$`Nurses and Midwives per 1000 people`   -0.306     1.59     -0.192 8.49e- 1
glance(fit1)
## # A tibble: 1 x 12
##   r.squared adj.r.squared sigma statistic p.value    df logLik   AIC   BIC
##       <dbl>         <dbl> <dbl>     <dbl>   <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1     0.625         0.583  2.98      15.0 6.16e-6     3  -75.7  161.  169.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Regressing infant mortality rate on health infrastructure

fit2 <- lm(X$`Infant Mortality Rate(per 1000 live births)`
           ~X$`Hospital Beds per 1000 people`
           +X$`Physicians per 1000 people`
           +X$`Nurses and Midwives per 1000 people`)
summary(fit2)
## 
## Call:
## lm(formula = X$`Infant Mortality Rate(per 1000 live births)` ~ 
##     X$`Hospital Beds per 1000 people` + X$`Physicians per 1000 people` + 
##         X$`Nurses and Midwives per 1000 people`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.5693  -4.0172   0.5575   8.1405  23.0249 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                               61.509      6.850   8.979 1.36e-09
## X$`Hospital Beds per 1000 people`        -16.230      3.732  -4.349 0.000175
## X$`Physicians per 1000 people`            21.445     11.068   1.938 0.063197
## X$`Nurses and Midwives per 1000 people`   -6.180      7.545  -0.819 0.419901
##                                            
## (Intercept)                             ***
## X$`Hospital Beds per 1000 people`       ***
## X$`Physicians per 1000 people`          .  
## X$`Nurses and Midwives per 1000 people`    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.13 on 27 degrees of freedom
## Multiple R-squared:  0.6604, Adjusted R-squared:  0.6227 
## F-statistic:  17.5 on 3 and 27 DF,  p-value: 1.64e-06
tidy(fit2)
## # A tibble: 4 x 5
##   term                                 estimate std.error statistic      p.value
##   <chr>                                   <dbl>     <dbl>     <dbl>        <dbl>
## 1 (Intercept)                             61.5       6.85     8.98       1.36e-9
## 2 X$`Hospital Beds per 1000 people`      -16.2       3.73    -4.35       1.75e-4
## 3 X$`Physicians per 1000 people`          21.4      11.1      1.94       6.32e-2
## 4 X$`Nurses and Midwives per 1000 peo~    -6.18      7.54    -0.819      4.20e-1
glance(fit2)
## # A tibble: 1 x 12
##   r.squared adj.r.squared sigma statistic p.value    df logLik   AIC   BIC
##       <dbl>         <dbl> <dbl>     <dbl>   <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1     0.660         0.623  14.1      17.5 1.64e-6     3  -124.  258.  265.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Regressing GDP Per Capita on health infrastructure

fit3 <- lm(X$`GDP Per Capita,PPP(Constant 2017 international $)`
           ~X$`Hospital Beds per 1000 people`
           +X$`Physicians per 1000 people`
           +X$`Nurses and Midwives per 1000 people`)

summary(fit3)
## 
## Call:
## lm(formula = X$`GDP Per Capita,PPP(Constant 2017 international $)` ~ 
##     X$`Hospital Beds per 1000 people` + X$`Physicians per 1000 people` + 
##         X$`Nurses and Midwives per 1000 people`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1434.0  -353.5   -68.4   150.8  4472.4 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                715.0      514.9   1.389  0.17633
## X$`Hospital Beds per 1000 people`         1761.5      280.5   6.279 1.02e-06
## X$`Physicians per 1000 people`            2387.5      831.9   2.870  0.00789
## X$`Nurses and Midwives per 1000 people`    230.5      567.1   0.407  0.68757
##                                            
## (Intercept)                                
## X$`Hospital Beds per 1000 people`       ***
## X$`Physicians per 1000 people`          ** 
## X$`Nurses and Midwives per 1000 people`    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1062 on 27 degrees of freedom
## Multiple R-squared:  0.8007, Adjusted R-squared:  0.7785 
## F-statistic: 36.15 on 3 and 27 DF,  p-value: 1.346e-09
tidy(fit3)
## # A tibble: 4 x 5
##   term                                    estimate std.error statistic   p.value
##   <chr>                                      <dbl>     <dbl>     <dbl>     <dbl>
## 1 (Intercept)                                 715.      515.     1.39    1.76e-1
## 2 X$`Hospital Beds per 1000 people`          1762.      281.     6.28    1.02e-6
## 3 X$`Physicians per 1000 people`             2388.      832.     2.87    7.89e-3
## 4 X$`Nurses and Midwives per 1000 people`     231.      567.     0.407   6.88e-1
glance(fit3)
## # A tibble: 1 x 12
##   r.squared adj.r.squared sigma statistic p.value    df logLik   AIC   BIC
##       <dbl>         <dbl> <dbl>     <dbl>   <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1     0.801         0.779 1062.      36.2 1.35e-9     3  -258.  526.  533.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Pearson Correlation Table

library(picante)
## Loading required package: ape
## Loading required package: vegan
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-6
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
X[1:3] <- NULL

pearson <- cor.table(X,cor.method = "pearson",cor.type = "standard")

panderOptions("table.style", "grid")
pander(pearson$r)
Table continues below
  Life Expectancy at birth(total years)
 **Life Expectancy at
 birth(total years)**
          1
Infant Mortality Rate(per 1000 live births)
       -0.8841
GDP Per Capita,PPP(Constant 2017 international $)
        0.788
Hospital Beds per 1000 people
        0.7643
Physicians per 1000 people
        0.2983
Nurses and Midwives per 1000 people
        0.5615
Table continues below
  Infant Mortality Rate(per 1000 live births)
 **Life Expectancy at
 birth(total years)**
       -0.8841
Infant Mortality Rate(per 1000 live births)
          1
GDP Per Capita,PPP(Constant 2017 international $)
       -0.6789
Hospital Beds per 1000 people
       -0.7808
Physicians per 1000 people
        0.1021
Nurses and Midwives per 1000 people
       -0.6091
Table continues below
  GDP Per Capita,PPP(Constant 2017 international $)
 **Life Expectancy at
 birth(total years)**
       0.788
Infant Mortality Rate(per 1000 live births)
      -0.6789
GDP Per Capita,PPP(Constant 2017 international $)
         1
Hospital Beds per 1000 people
       0.857
Physicians per 1000 people
      0.3645
Nurses and Midwives per 1000 people
      0.6738
Table continues below
  Hospital Beds per 1000 people
 **Life Expectancy at
 birth(total years)**
       0.7643
Infant Mortality Rate(per 1000 live births)
       -0.7808
GDP Per Capita,PPP(Constant 2017 international $)
        0.857
Hospital Beds per 1000 people
          1
Physicians per 1000 people
       0.1306
Nurses and Midwives per 1000 people
       0.7277
Table continues below
  Physicians per 1000 people
 **Life Expectancy at
 birth(total years)**
      0.2983
Infant Mortality Rate(per 1000 live births)
      0.1021
GDP Per Capita,PPP(Constant 2017 international $)
      0.3645
Hospital Beds per 1000 people
      0.1306
Physicians per 1000 people
        1
Nurses and Midwives per 1000 people
      0.1978
  Nurses and Midwives per 1000 people
 **Life Expectancy at
 birth(total years)**
       0.5615
Infant Mortality Rate(per 1000 live births)
      -0.6091
GDP Per Capita,PPP(Constant 2017 international $)
       0.6738
Hospital Beds per 1000 people
       0.7277
Physicians per 1000 people
       0.1978
Nurses and Midwives per 1000 people
         1

Spearman Correlation Table

spearman <- cor.table(X,cor.method = "spearman",cor.type ="standard")

pander(spearman$r)
Table continues below
  Life Expectancy at birth(total years)
 **Life Expectancy at
 birth(total years)**
          1
Infant Mortality Rate(per 1000 live births)
       -0.8089
GDP Per Capita,PPP(Constant 2017 international $)
        0.7802
Hospital Beds per 1000 people
        0.5996
Physicians per 1000 people
        0.3206
Nurses and Midwives per 1000 people
        0.3794
Table continues below
  Infant Mortality Rate(per 1000 live births)
 **Life Expectancy at
 birth(total years)**
       -0.8089
Infant Mortality Rate(per 1000 live births)
          1
GDP Per Capita,PPP(Constant 2017 international $)
       -0.4694
Hospital Beds per 1000 people
       -0.4447
Physicians per 1000 people
        0.1488
Nurses and Midwives per 1000 people
       -0.3367
Table continues below
  GDP Per Capita,PPP(Constant 2017 international $)
 **Life Expectancy at
 birth(total years)**
      0.7802
Infant Mortality Rate(per 1000 live births)
      -0.4694
GDP Per Capita,PPP(Constant 2017 international $)
         1
Hospital Beds per 1000 people
      0.7815
Physicians per 1000 people
      0.6101
Nurses and Midwives per 1000 people
      0.5153
Table continues below
  Hospital Beds per 1000 people
 **Life Expectancy at
 birth(total years)**
       0.5996
Infant Mortality Rate(per 1000 live births)
       -0.4447
GDP Per Capita,PPP(Constant 2017 international $)
       0.7815
Hospital Beds per 1000 people
          1
Physicians per 1000 people
       0.3573
Nurses and Midwives per 1000 people
       0.5097
Table continues below
  Physicians per 1000 people
 **Life Expectancy at
 birth(total years)**
      0.3206
Infant Mortality Rate(per 1000 live births)
      0.1488
GDP Per Capita,PPP(Constant 2017 international $)
      0.6101
Hospital Beds per 1000 people
      0.3573
Physicians per 1000 people
        1
Nurses and Midwives per 1000 people
      0.2125
  Nurses and Midwives per 1000 people
 **Life Expectancy at
 birth(total years)**
       0.3794
Infant Mortality Rate(per 1000 live births)
      -0.3367
GDP Per Capita,PPP(Constant 2017 international $)
       0.5153
Hospital Beds per 1000 people
       0.5097
Physicians per 1000 people
       0.2125
Nurses and Midwives per 1000 people
         1