PA ~ RE Pre-COVID

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter     max.grad cond.H
##  logit flexible  3752 -7399.04 14840.08 955(6646) 3.68e+02 NaN   
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 236 
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## roaming_entropy  0.1081712         NA      NA       NA
## time_of_day      0.0037596         NA      NA       NA
## precipi          0.1132852         NA      NA       NA
## mean_temp       -0.0112147         NA      NA       NA
## distance         0.0004948         NA      NA       NA
## dowMonday       -0.2078319         NA      NA       NA
## dowSaturday      0.5050218         NA      NA       NA
## dowSunday       -0.0369758         NA      NA       NA
## dowThursday     -0.2960213         NA      NA       NA
## dowTuesday      -0.6234429         NA      NA       NA
## dowWednesday    -0.6610389         NA      NA       NA
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -4.40117         NA      NA
## (10,20]|(20,30]  -3.47658         NA      NA
## (20,30]|(30,40]  -2.60577         NA      NA
## (30,40]|(40,50]  -1.83912         NA      NA
## (40,50]|(50,60]  -1.05119         NA      NA
## (50,60]|(60,70]  -0.02025         NA      NA
## (60,70]|(70,80]   0.78080         NA      NA
## (70,80]|(80,90]   1.70447         NA      NA
## (80,90]|(90,100]  2.91198         NA      NA
## (5580 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3752 -7339.68 14713.36 3188(21593) 7.00e-03 6.4e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.322    1.15    
## Number of groups:  subject 236 
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy  0.18839    0.04316   4.364 1.27e-05 ***
## dowMonday       -0.09449    0.11489  -0.822  0.41081    
## dowSaturday      0.65356    0.11960   5.464 4.65e-08 ***
## dowSunday        0.12829    0.12807   1.002  0.31651    
## dowThursday     -0.34036    0.11592  -2.936  0.00332 ** 
## dowTuesday      -0.64856    0.11006  -5.893 3.80e-09 ***
## dowWednesday    -0.80956    0.12115  -6.682 2.35e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1492     0.2028 -20.456
## (10,20]|(20,30]   -3.1444     0.1834 -17.145
## (20,30]|(30,40]   -2.1645     0.1745 -12.403
## (30,40]|(40,50]   -1.2729     0.1709  -7.448
## (40,50]|(50,60]   -0.3247     0.1694  -1.916
## (50,60]|(60,70]    0.9442     0.1700   5.555
## (60,70]|(70,80]    1.9393     0.1727  11.227
## (70,80]|(80,90]    3.0495     0.1787  17.064
## (80,90]|(90,100]   4.4231     0.1972  22.430
## (5580 observations deleted due to missingness)
##               df      BIC
## complex_PA_RE 21 14970.91
## simple_PA_RE  17 14819.27

PA ~ NL Pre_COVID

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3530 -6843.45 13728.90 3670(18582) 4.80e+00 6.8e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.361    1.167   
## Number of groups:  subject 236 
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## novel_locations  0.0057750  0.0007405   7.799 6.25e-15 ***
## time_of_day      0.0058588  0.0017871   3.278  0.00104 ** 
## precipi         -0.0920865  0.2183078  -0.422  0.67316    
## mean_temp       -0.0066466  0.0045760  -1.452  0.14637    
## distance         0.0003341  0.0001545   2.162  0.03058 *  
## dowMonday       -0.1599740  0.1391882  -1.149  0.25042    
## dowSaturday      0.4164064  0.1267103   3.286  0.00102 ** 
## dowSunday       -0.0844184  0.1408618  -0.599  0.54897    
## dowThursday     -0.3492895  0.1294266  -2.699  0.00696 ** 
## dowTuesday      -0.6571437  0.1261150  -5.211 1.88e-07 ***
## dowWednesday    -0.7942914  0.1392491  -5.704 1.17e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.7855     0.3996 -11.975
## (10,20]|(20,30]   -3.7648     0.3887  -9.685
## (20,30]|(30,40]   -2.7500     0.3840  -7.162
## (30,40]|(40,50]   -1.8394     0.3821  -4.814
## (40,50]|(50,60]   -0.8750     0.3812  -2.295
## (50,60]|(60,70]    0.4233     0.3811   1.111
## (60,70]|(70,80]    1.4580     0.3822   3.815
## (70,80]|(80,90]    2.5696     0.3845   6.683
## (80,90]|(90,100]   3.9587     0.3933  10.065
## (5802 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations + dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3530 -6852.92 13739.84 1799(10409) 6.64e-02 5.3e+05
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.358    1.165   
## Number of groups:  subject 236 
## 
## Coefficients:
##                   Estimate Std. Error z value     Pr(>|z|)    
## novel_locations  0.0066013  0.0006869   9.610      < 2e-16 ***
## dowMonday       -0.0529282  0.1214789  -0.436     0.663055    
## dowSaturday      0.4558068  0.1222015   3.730     0.000192 ***
## dowSunday        0.0299557  0.1288722   0.232     0.816192    
## dowThursday     -0.2997968  0.1222923  -2.451     0.014227 *  
## dowTuesday      -0.5713035  0.1168765  -4.888 0.0000010182 ***
## dowWednesday    -0.7417661  0.1312278  -5.653 0.0000000158 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3753     0.1774 -24.662
## (10,20]|(20,30]   -3.3560     0.1514 -22.169
## (20,30]|(30,40]   -2.3421     0.1391 -16.836
## (30,40]|(40,50]   -1.4342     0.1340 -10.705
## (40,50]|(50,60]   -0.4732     0.1316  -3.594
## (50,60]|(60,70]    0.8210     0.1321   6.217
## (60,70]|(70,80]    1.8516     0.1357  13.648
## (70,80]|(80,90]    2.9591     0.1435  20.614
## (80,90]|(90,100]   4.3470     0.1672  26.001
## (5802 observations deleted due to missingness)
##               df      BIC
## complex_PA_NL 21 13858.45
## simple_PA_NL  17 13844.72

RE ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 56302.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5750 -0.6444 -0.0388  0.5547  8.1670 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.1108   0.3329  
##  Residual             0.7114   0.8435  
## Number of obs: 22269, groups:  subject, 236
## 
## Fixed effects:
##                 Estimate  Std. Error          df  t value Pr(>|t|)    
## (Intercept)      2.68906     0.02725   513.95861   98.697  < 2e-16 ***
## lockdown        -1.31204     0.01171 22119.43894 -112.015  < 2e-16 ***
## dowMonday       -0.22012     0.02119 22031.73123  -10.387  < 2e-16 ***
## dowSaturday     -0.20450     0.02144 22031.80328   -9.537  < 2e-16 ***
## dowSunday       -0.38402     0.02135 22032.64256  -17.985  < 2e-16 ***
## dowThursday     -0.04559     0.02088 22031.32539   -2.183 0.029044 *  
## dowTuesday      -0.19971     0.02096 22032.09115   -9.529  < 2e-16 ***
## dowWednesday    -0.07660     0.02097 22031.41954   -3.653 0.000259 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.259                                          
## dowMonday   -0.388  0.016                                   
## dowSaturday -0.382  0.009  0.488                            
## dowSunday   -0.386  0.017  0.491  0.485                     
## dowThursday -0.387 -0.010  0.501  0.495  0.497              
## dowTuesday  -0.396  0.030  0.500  0.494  0.496  0.507       
## dowWednesdy -0.386 -0.006  0.499  0.493  0.496  0.507  0.505

NL ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 226331.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0146 -0.5184 -0.2334  0.2032 16.8561 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  299.5   17.31   
##  Residual             3283.7   57.30   
## Number of obs: 20654, groups:  subject, 236
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     64.7348     1.6378   819.5275  39.526  < 2e-16 ***
## lockdown       -20.9396     0.8469 20554.7833 -24.725  < 2e-16 ***
## dowMonday      -15.3808     1.4954 20421.1453 -10.285  < 2e-16 ***
## dowSaturday      3.0943     1.5138 20421.2495   2.044    0.041 *  
## dowSunday       -6.7273     1.5075 20422.9883  -4.462 8.15e-06 ***
## dowThursday     -6.0565     1.4718 20420.3481  -4.115 3.89e-05 ***
## dowTuesday     -13.4029     1.4780 20421.8194  -9.069  < 2e-16 ***
## dowWednesday   -10.4849     1.4782 20420.5433  -7.093 1.35e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.337                                          
## dowMonday   -0.456  0.017                                   
## dowSaturday -0.448  0.009  0.488                            
## dowSunday   -0.453  0.018  0.490  0.484                     
## dowThursday -0.454 -0.011  0.501  0.495  0.497              
## dowTuesday  -0.467  0.033  0.500  0.494  0.496  0.507       
## dowWednesdy -0.453 -0.007  0.499  0.493  0.495  0.507  0.505

PA ~ Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  9955 -19395.21 38824.42 3656(22908) 6.96e-03 5.6e+02
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.422    1.193   
## Number of groups:  subject 236 
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## lockdown     -0.47168    0.03703 -12.738  < 2e-16 ***
## dowMonday    -0.29968    0.06717  -4.462 8.13e-06 ***
## dowSaturday   0.21179    0.06906   3.067  0.00216 ** 
## dowSunday     0.11463    0.07035   1.629  0.10321    
## dowThursday  -0.29532    0.06748  -4.377 1.21e-05 ***
## dowTuesday   -0.45945    0.06746  -6.811 9.71e-12 ***
## dowWednesday -0.19489    0.06927  -2.813  0.00490 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -4.34104    0.11175 -38.846
## (10,20]|(20,30]  -3.42823    0.10371 -33.057
## (20,30]|(30,40]  -2.58314    0.09996 -25.843
## (30,40]|(40,50]  -1.70778    0.09796 -17.433
## (40,50]|(50,60]  -0.75312    0.09689  -7.773
## (50,60]|(60,70]   0.52024    0.09679   5.375
## (60,70]|(70,80]   1.49330    0.09817  15.212
## (70,80]|(80,90]   2.56106    0.10220  25.059
## (80,90]|(90,100]  3.89741    0.11603  33.590
## (18455 observations deleted due to missingness)

NA ~ Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: NA_avg ~ lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H
##  logit flexible  9955 -19205.27 38444.55 2748(29361) 1.26e+01 NaN   
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 2.45     1.565   
## Number of groups:  subject 236 
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## lockdown       0.2922         NA      NA       NA
## dowMonday      0.1717         NA      NA       NA
## dowSaturday   -0.1487         NA      NA       NA
## dowSunday     -0.1209         NA      NA       NA
## dowThursday    0.2260         NA      NA       NA
## dowTuesday     0.4124         NA      NA       NA
## dowWednesday   0.1237         NA      NA       NA
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -3.02200         NA      NA
## (10,20]|(20,30]  -1.82590         NA      NA
## (20,30]|(30,40]  -0.87130         NA      NA
## (30,40]|(40,50]  -0.01714         NA      NA
## (40,50]|(50,60]   0.91868         NA      NA
## (50,60]|(60,70]   2.13056         NA      NA
## (60,70]|(70,80]   2.96730         NA      NA
## (70,80]|(80,90]   4.00463         NA      NA
## (80,90]|(90,100]  4.97155         NA      NA
## (18455 observations deleted due to missingness)

PA ~ RE * Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8308 -16249.56 32537.12 4278(21866) 9.87e-03 1.0e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.359    1.166   
## Number of groups:  subject 236 
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy           0.12437    0.03911   3.180 0.001471 ** 
## lockdown                 -0.42120    0.11024  -3.821 0.000133 ***
## dowMonday                -0.23555    0.07373  -3.195 0.001399 ** 
## dowSaturday               0.30957    0.07785   3.976 7.00e-05 ***
## dowSunday                 0.13724    0.07760   1.769 0.076957 .  
## dowThursday              -0.29237    0.07329  -3.989 6.63e-05 ***
## dowTuesday               -0.47868    0.07300  -6.558 5.47e-11 ***
## dowWednesday             -0.21529    0.07480  -2.878 0.003999 ** 
## roaming_entropy:lockdown  0.16380    0.04812   3.404 0.000663 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.9592     0.1546 -25.609
## (10,20]|(20,30]   -3.0851     0.1478 -20.872
## (20,30]|(30,40]   -2.2447     0.1445 -15.529
## (30,40]|(40,50]   -1.3707     0.1429  -9.592
## (40,50]|(50,60]   -0.4242     0.1422  -2.984
## (50,60]|(60,70]    0.8240     0.1424   5.784
## (60,70]|(70,80]    1.7983     0.1439  12.500
## (70,80]|(80,90]    2.8832     0.1473  19.571
## (80,90]|(90,100]   4.2323     0.1588  26.646
## (20102 observations deleted due to missingness)

PA ~ NL * Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8086 -15775.64 31589.27 2660(16141) 8.34e-01 1.1e+06
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.361    1.167   
## Number of groups:  subject 236 
## 
## Coefficients:
##                            Estimate Std. Error z value      Pr(>|z|)    
## novel_locations           0.0063522  0.0006263  10.142       < 2e-16 ***
## lockdown                 -0.2014057  0.0549524  -3.665      0.000247 ***
## dowMonday                -0.2491418  0.0752903  -3.309      0.000936 ***
## dowSaturday               0.2118103  0.0784024   2.702      0.006901 ** 
## dowSunday                 0.1085526  0.0777836   1.396      0.162843    
## dowThursday              -0.2871367  0.0748445  -3.836      0.000125 ***
## dowTuesday               -0.4417880  0.0747108  -5.913 0.00000000335 ***
## dowWednesday             -0.1591567  0.0771397  -2.063      0.039091 *  
## novel_locations:lockdown -0.0027363  0.0007858  -3.482      0.000497 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.9705     0.1220 -32.540
## (10,20]|(20,30]   -3.0987     0.1131 -27.409
## (20,30]|(30,40]   -2.2538     0.1087 -20.740
## (30,40]|(40,50]   -1.3759     0.1064 -12.932
## (40,50]|(50,60]   -0.4265     0.1053  -4.048
## (50,60]|(60,70]    0.8308     0.1057   7.860
## (60,70]|(70,80]    1.8209     0.1077  16.911
## (70,80]|(80,90]    2.9035     0.1125  25.819
## (80,90]|(90,100]   4.2584     0.1276  33.361
## (20324 observations deleted due to missingness)

PA ~ RE * Pre_COVID_RE Post-Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ roaming_entropy * pre_covid_re + dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  4556 -8810.91 17659.82 3753(32356) 3.47e-03 3.1e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.994    1.412   
## Number of groups:  subject 236 
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## roaming_entropy               0.41364    0.21837   1.894 0.058194 .  
## pre_covid_re                  0.11978    0.26786   0.447 0.654747    
## dowMonday                    -0.37959    0.09852  -3.853 0.000117 ***
## dowSaturday                  -0.03895    0.10498  -0.371 0.710625    
## dowSunday                     0.17553    0.09906   1.772 0.076399 .  
## dowThursday                  -0.28408    0.09609  -2.957 0.003111 ** 
## dowTuesday                   -0.30376    0.10087  -3.011 0.002601 ** 
## dowWednesday                  0.12396    0.09641   1.286 0.198529    
## roaming_entropy:pre_covid_re -0.04306    0.08957  -0.481 0.630678    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.3483     0.6418  -5.217
## (10,20]|(20,30]   -2.4785     0.6396  -3.875
## (20,30]|(30,40]   -1.6593     0.6388  -2.598
## (30,40]|(40,50]   -0.7291     0.6384  -1.142
## (40,50]|(50,60]    0.2886     0.6384   0.452
## (50,60]|(60,70]    1.6208     0.6388   2.537
## (60,70]|(70,80]    2.6495     0.6396   4.142
## (70,80]|(80,90]    3.7752     0.6416   5.884
## (80,90]|(90,100]   5.1689     0.6476   7.982
## (14522 observations deleted due to missingness)

PA ~ NL * Pre_COVID_RE Post-Lockdown

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * pre_covid_re + dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter     max.grad cond.H 
##  logit flexible  4556 -8993.01 18024.01 817(4087) 4.95e+02 6.6e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 236 
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)    
## novel_locations               0.011499   0.003496   3.289 0.001006 ** 
## pre_covid_re                  0.117549   0.187927   0.626 0.531639    
## dowMonday                    -0.332935   0.092793  -3.588 0.000333 ***
## dowSaturday                  -0.021012   0.099129  -0.212 0.832136    
## dowSunday                     0.144371   0.093375   1.546 0.122072    
## dowThursday                  -0.222938   0.090897  -2.453 0.014181 *  
## dowTuesday                   -0.262301   0.095299  -2.752 0.005916 ** 
## dowWednesday                  0.128279   0.091042   1.409 0.158832    
## novel_locations:pre_covid_re -0.003447   0.001384  -2.490 0.012769 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -2.7999     0.4544  -6.161
## (10,20]|(20,30]   -2.0566     0.4521  -4.548
## (20,30]|(30,40]   -1.3826     0.4512  -3.064
## (30,40]|(40,50]   -0.6443     0.4508  -1.429
## (40,50]|(50,60]    0.1403     0.4507   0.311
## (50,60]|(60,70]    1.1442     0.4509   2.537
## (60,70]|(70,80]    1.9148     0.4514   4.241
## (70,80]|(80,90]    2.7849     0.4529   6.150
## (80,90]|(90,100]   3.8700     0.4577   8.456
## (14522 observations deleted due to missingness)

Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) +  
##     dow + (1 | subject)
## data:    prelockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H 
##  logit flexible  3530 -6852.78 13743.56 3062(16012) 5.45e-03 2.1e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.357    1.165   
## Number of groups:  subject 236 
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1  0.14822    0.28193   0.526
## bs(novel_locations, knots = c(1, 26), degree = 1)2  0.26745    0.26655   1.003
## bs(novel_locations, knots = c(1, 26), degree = 1)3  6.70727    0.76552   8.762
## dowMonday                                          -0.05180    0.12148  -0.426
## dowSaturday                                         0.45573    0.12275   3.713
## dowSunday                                           0.02927    0.13043   0.224
## dowThursday                                        -0.29902    0.12232  -2.445
## dowTuesday                                         -0.57303    0.11691  -4.901
## dowWednesday                                       -0.74061    0.13134  -5.639
##                                                        Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1     0.599089    
## bs(novel_locations, knots = c(1, 26), degree = 1)2     0.315674    
## bs(novel_locations, knots = c(1, 26), degree = 1)3      < 2e-16 ***
## dowMonday                                              0.669816    
## dowSaturday                                            0.000205 ***
## dowSunday                                              0.822409    
## dowThursday                                            0.014503 *  
## dowTuesday                                         0.0000009514 ***
## dowWednesday                                       0.0000000171 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.2726     0.3123 -13.681
## (10,20]|(20,30]   -3.2533     0.2982 -10.911
## (20,30]|(30,40]   -2.2393     0.2920  -7.669
## (30,40]|(40,50]   -1.3312     0.2896  -4.596
## (40,50]|(50,60]   -0.3700     0.2888  -1.281
## (50,60]|(60,70]    0.9243     0.2891   3.198
## (60,70]|(70,80]    1.9548     0.2907   6.725
## (70,80]|(80,90]    3.0623     0.2944  10.401
## (80,90]|(90,100]   4.4502     0.3067  14.511
## (5802 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) +  
##     dow + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter       max.grad cond.H
##  logit flexible  4556 -8808.22 17654.44 2685(22053) 4.41e+00 NaN   
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.99     1.411   
## Number of groups:  subject 236 
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1  0.14756         NA      NA
## bs(novel_locations, knots = c(1, 26), degree = 1)2  0.63107         NA      NA
## bs(novel_locations, knots = c(1, 26), degree = 1)3  2.07255         NA      NA
## dowMonday                                          -0.37882         NA      NA
## dowSaturday                                        -0.05126         NA      NA
## dowSunday                                           0.17391         NA      NA
## dowThursday                                        -0.28448         NA      NA
## dowTuesday                                         -0.31434         NA      NA
## dowWednesday                                        0.13007         NA      NA
##                                                    Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)2       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)3       NA
## dowMonday                                                NA
## dowSaturday                                              NA
## dowSunday                                                NA
## dowThursday                                              NA
## dowTuesday                                               NA
## dowWednesday                                             NA
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]   -3.60921         NA      NA
## (10,20]|(20,30]  -2.74165         NA      NA
## (20,30]|(30,40]  -1.92343         NA      NA
## (30,40]|(40,50]  -0.99269         NA      NA
## (40,50]|(50,60]   0.02749         NA      NA
## (50,60]|(60,70]   1.36161         NA      NA
## (60,70]|(70,80]   2.38972         NA      NA
## (70,80]|(80,90]   3.51207         NA      NA
## (80,90]|(90,100]  4.90070         NA      NA
## (14522 observations deleted due to missingness)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  8086 -15755.07 31556.13 4929(29501) 1.79e-02 6.9e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.364    1.168   
## Number of groups:  subject 236 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.05090    0.26158
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.06614    0.24390
## bs(novel_locations, knots = c(1, 26), degree = 1)3           6.83824    0.72495
## lockdown                                                    -0.59507    0.24169
## dowMonday                                                   -0.22060    0.07544
## dowSaturday                                                  0.20926    0.07865
## dowSunday                                                    0.10754    0.07821
## dowThursday                                                 -0.26966    0.07488
## dowTuesday                                                  -0.43577    0.07482
## dowWednesday                                                -0.14537    0.07721
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.17967    0.27279
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.60059    0.25118
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -4.60958    0.89883
##                                                             z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -0.195
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -0.271
## bs(novel_locations, knots = c(1, 26), degree = 1)3            9.433
## lockdown                                                     -2.462
## dowMonday                                                    -2.924
## dowSaturday                                                   2.661
## dowSunday                                                     1.375
## dowThursday                                                  -3.601
## dowTuesday                                                   -5.824
## dowWednesday                                                 -1.883
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   0.659
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.391
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -5.128
##                                                                  Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1               0.845722    
## bs(novel_locations, knots = c(1, 26), degree = 1)2               0.786260    
## bs(novel_locations, knots = c(1, 26), degree = 1)3                < 2e-16 ***
## lockdown                                                         0.013811 *  
## dowMonday                                                        0.003453 ** 
## dowSaturday                                                      0.007799 ** 
## dowSunday                                                        0.169140    
## dowThursday                                                      0.000317 ***
## dowTuesday                                                  0.00000000574 ***
## dowWednesday                                                     0.059741 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown      0.510123    
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown      0.016801 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 0.00000029222 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1535     0.2652 -15.660
## (10,20]|(20,30]   -3.2812     0.2609 -12.575
## (20,30]|(30,40]   -2.4345     0.2588  -9.405
## (30,40]|(40,50]   -1.5537     0.2578  -6.027
## (40,50]|(50,60]   -0.6007     0.2574  -2.334
## (50,60]|(60,70]    0.6605     0.2575   2.565
## (60,70]|(70,80]    1.6532     0.2583   6.401
## (70,80]|(80,90]    2.7381     0.2603  10.520
## (80,90]|(90,100]   4.0948     0.2672  15.324
## (20324 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7644 -14838.68 29723.36 4749(28820) 7.51e-03 4.7e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.431    1.196   
## Number of groups:  subject 236 
## 
## Coefficients:
##                                                              Estimate
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.002889
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.114367
## bs(novel_locations, knots = c(1, 26), degree = 1)3           2.484619
## lockdown                                                    -0.580866
## dowMonday                                                   -0.215589
## dowSaturday                                                  0.241150
## dowSunday                                                    0.134360
## dowThursday                                                 -0.251194
## dowTuesday                                                  -0.398895
## dowWednesday                                                -0.199813
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.163183
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.556994
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -0.337451
##                                                             Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1            0.263063  -0.011
## bs(novel_locations, knots = c(1, 26), degree = 1)2            0.246214  -0.465
## bs(novel_locations, knots = c(1, 26), degree = 1)3            0.375981   6.608
## lockdown                                                      0.242900  -2.391
## dowMonday                                                     0.077646  -2.777
## dowSaturday                                                   0.081941   2.943
## dowSunday                                                     0.081569   1.647
## dowThursday                                                   0.077012  -3.262
## dowTuesday                                                    0.076999  -5.181
## dowWednesday                                                  0.079387  -2.517
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   0.274367   0.595
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   0.255266   2.182
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   0.513607  -0.657
##                                                             Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1           0.99124    
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.64229    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          3.89e-11 ***
## lockdown                                                     0.01679 *  
## dowMonday                                                    0.00549 ** 
## dowSaturday                                                  0.00325 ** 
## dowSunday                                                    0.09952 .  
## dowThursday                                                  0.00111 ** 
## dowTuesday                                                  2.21e-07 ***
## dowWednesday                                                 0.01184 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.55200    
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.02911 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  0.51117    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.1937     0.2681 -15.640
## (10,20]|(20,30]   -3.2861     0.2635 -12.474
## (20,30]|(30,40]   -2.4203     0.2613  -9.264
## (30,40]|(40,50]   -1.5312     0.2602  -5.885
## (40,50]|(50,60]   -0.5719     0.2598  -2.202
## (50,60]|(60,70]    0.7077     0.2599   2.723
## (60,70]|(70,80]    1.7197     0.2608   6.594
## (70,80]|(80,90]    2.8189     0.2631  10.715
## (80,90]|(90,100]   4.2072     0.2711  15.517
## (20766 observations deleted due to missingness)

##                                      df      BIC
## PA_NL_PreLD_notch                    19 13860.78
## PA_NL_PostLD_notch                   19 17776.50
## PA_NL_LD_notch                       23 31717.08
## PA_NL_LD_notch_controldistance_100KM 23 29883.02

Z Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: 
## PA_avg ~ bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7644 -14844.04 29734.09 5105(31050) 2.10e-02 1.8e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.435    1.198   
## Number of groups:  subject 236 
## 
## Coefficients:
##                                                                         Estimate
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1           0.26912
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2           0.12593
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3           2.50361
## lockdown                                                                -0.44057
## dowMonday                                                               -0.22305
## dowSaturday                                                              0.23386
## dowSunday                                                                0.13367
## dowThursday                                                             -0.25754
## dowTuesday                                                              -0.40409
## dowWednesday                                                            -0.20535
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown -0.02012
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  0.39135
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown -0.26156
##                                                                         Std. Error
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.52958
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.47733
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3             0.56121
## lockdown                                                                   0.50918
## dowMonday                                                                  0.07759
## dowSaturday                                                                0.08196
## dowSunday                                                                  0.08142
## dowThursday                                                                0.07703
## dowTuesday                                                                 0.07697
## dowWednesday                                                               0.07935
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.56945
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.51040
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    0.67927
##                                                                         z value
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1            0.508
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2            0.264
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3            4.461
## lockdown                                                                 -0.865
## dowMonday                                                                -2.875
## dowSaturday                                                               2.853
## dowSunday                                                                 1.642
## dowThursday                                                              -3.343
## dowTuesday                                                               -5.250
## dowWednesday                                                             -2.588
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  -0.035
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown   0.767
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  -0.385
##                                                                            Pr(>|z|)
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.611327
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.791920
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3          0.000008155
## lockdown                                                                   0.386904
## dowMonday                                                                  0.004044
## dowSaturday                                                                0.004327
## dowSunday                                                                  0.100640
## dowThursday                                                                0.000828
## dowTuesday                                                              0.000000152
## dowWednesday                                                               0.009662
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.971812
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.443233
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    0.700196
##                                                                            
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1             
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2             
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3          ***
## lockdown                                                                   
## dowMonday                                                               ** 
## dowSaturday                                                             ** 
## dowSunday                                                                  
## dowThursday                                                             ***
## dowTuesday                                                              ***
## dowWednesday                                                            ** 
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    
## bs(within_subjects_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.9454     0.4920  -8.019
## (10,20]|(20,30]   -3.0380     0.4895  -6.206
## (20,30]|(30,40]   -2.1725     0.4885  -4.447
## (30,40]|(40,50]   -1.2841     0.4881  -2.631
## (40,50]|(50,60]   -0.3260     0.4879  -0.668
## (50,60]|(60,70]    0.9527     0.4878   1.953
## (60,70]|(70,80]    1.9639     0.4883   4.022
## (70,80]|(80,90]    3.0623     0.4896   6.255
## (80,90]|(90,100]   4.4490     0.4942   9.002
## (20766 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(within_subjects_lockdown_z_NL, knots = c(-0.725,  
##     -0.3), degree = 1) * lockdown + dow + (1 | subject)
## data:    distance_less_than_100_km
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7638 -14856.10 29758.19 5495(33514) 1.44e-02 1.7e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.425    1.194   
## Number of groups:  subject 236 
## 
## Coefficients:
##                                                                                  Estimate
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1          -0.08124
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2          -0.14355
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3           3.83037
## lockdown                                                                         -0.20602
## dowMonday                                                                        -0.27107
## dowSaturday                                                                       0.19699
## dowSunday                                                                         0.10853
## dowThursday                                                                      -0.28032
## dowTuesday                                                                       -0.43227
## dowWednesday                                                                     -0.21441
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown -0.21374
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown -0.00786
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown -2.43922
##                                                                                  Std. Error
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1             0.49340
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2             0.45358
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3             0.66788
## lockdown                                                                            0.53916
## dowMonday                                                                           0.07745
## dowSaturday                                                                         0.08199
## dowSunday                                                                           0.08148
## dowThursday                                                                         0.07696
## dowTuesday                                                                          0.07685
## dowWednesday                                                                        0.07953
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    0.58862
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    0.53749
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown    0.81966
##                                                                                  z value
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1           -0.165
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2           -0.316
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3            5.735
## lockdown                                                                          -0.382
## dowMonday                                                                         -3.500
## dowSaturday                                                                        2.403
## dowSunday                                                                          1.332
## dowThursday                                                                       -3.643
## dowTuesday                                                                        -5.625
## dowWednesday                                                                      -2.696
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown  -0.363
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown  -0.015
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown  -2.976
##                                                                                       Pr(>|z|)
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1               0.869224
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2               0.751632
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3          0.00000000975
## lockdown                                                                              0.702379
## dowMonday                                                                             0.000465
## dowSaturday                                                                           0.016277
## dowSunday                                                                             0.182894
## dowThursday                                                                           0.000270
## dowTuesday                                                                       0.00000001857
## dowWednesday                                                                          0.007015
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown      0.716511
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown      0.988333
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown      0.002922
##                                                                                     
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1             
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2             
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3          ***
## lockdown                                                                            
## dowMonday                                                                        ***
## dowSaturday                                                                      *  
## dowSunday                                                                           
## dowThursday                                                                      ***
## dowTuesday                                                                       ***
## dowWednesday                                                                     ** 
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)1:lockdown    
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)2:lockdown    
## bs(within_subjects_lockdown_z_NL, knots = c(-0.725, -0.3), degree = 1)3:lockdown ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.2909     0.4696  -9.138
## (10,20]|(20,30]   -3.3816     0.4671  -7.240
## (20,30]|(30,40]   -2.5168     0.4659  -5.402
## (30,40]|(40,50]   -1.6308     0.4654  -3.504
## (40,50]|(50,60]   -0.6772     0.4652  -1.456
## (50,60]|(60,70]    0.5961     0.4652   1.282
## (60,70]|(70,80]    1.6053     0.4655   3.448
## (70,80]|(80,90]    2.7009     0.4666   5.788
## (80,90]|(90,100]   4.0796     0.4712   8.659
## (20772 observations deleted due to missingness)

Symptom Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ depression_mean * lockdown + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  9955 -19453.44 38932.88 2171(13591) 1.01e-01 4.5e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.162    1.078   
## Number of groups:  subject 236 
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)    
## depression_mean          -0.089143   0.016053  -5.553 2.81e-08 ***
## lockdown                 -0.331617   0.053625  -6.184 6.25e-10 ***
## depression_mean:lockdown -0.021747   0.007882  -2.759  0.00579 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.6106     0.1263 -36.494
## (10,20]|(20,30]   -3.6993     0.1192 -31.028
## (20,30]|(30,40]   -2.8563     0.1159 -24.655
## (30,40]|(40,50]   -1.9846     0.1139 -17.420
## (40,50]|(50,60]   -1.0373     0.1128  -9.199
## (50,60]|(60,70]    0.2212     0.1124   1.968
## (60,70]|(70,80]    1.1818     0.1134  10.426
## (70,80]|(80,90]    2.2378     0.1166  19.185
## (80,90]|(90,100]   3.5632     0.1286  27.711
## (18455 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * depression_mean * lockdown + (1 |  
##     subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter     max.grad cond.H 
##  logit flexible  8086 -15940.82 31915.63 645(3224) 2.81e+03 6.1e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 236 
## 
## Coefficients:
##                                            Estimate Std. Error z value Pr(>|z|)
## novel_locations                           0.0053521  0.0008554   6.257 3.93e-10
## depression_mean                          -0.0781051  0.0164256  -4.755 1.98e-06
## lockdown                                 -0.0138463  0.0758490  -0.183   0.8552
## novel_locations:depression_mean           0.0001871  0.0001234   1.516   0.1295
## novel_locations:lockdown                 -0.0025709  0.0010793  -2.382   0.0172
## depression_mean:lockdown                 -0.0188872  0.0111142  -1.699   0.0892
## novel_locations:depression_mean:lockdown -0.0001197  0.0001578  -0.759   0.4480
##                                             
## novel_locations                          ***
## depression_mean                          ***
## lockdown                                    
## novel_locations:depression_mean             
## novel_locations:lockdown                 *  
## depression_mean:lockdown                 .  
## novel_locations:depression_mean:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.6955     0.1288 -28.693
## (10,20]|(20,30]   -2.8857     0.1215 -23.755
## (20,30]|(30,40]   -2.1190     0.1180 -17.959
## (30,40]|(40,50]   -1.3447     0.1162 -11.577
## (40,50]|(50,60]   -0.5329     0.1153  -4.623
## (50,60]|(60,70]    0.5045     0.1154   4.373
## (60,70]|(70,80]    1.3017     0.1165  11.178
## (70,80]|(80,90]    2.1925     0.1194  18.370
## (80,90]|(90,100]   3.3359     0.1292  25.818
## (20324 observations deleted due to missingness)

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ novel_locations * anx_change + (1 | subject)
## data:    lockdown_df
## 
##  link  threshold nobs logLik   AIC      niter      max.grad cond.H 
##  logit flexible  4074 -7919.36 15864.72 1117(8236) 9.52e+00 5.0e+06
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.859    1.364   
## Number of groups:  subject 208 
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## novel_locations             0.0043238  0.0005523   7.828 4.94e-15 ***
## anx_change                 -0.0359117  0.0248818  -1.443    0.149    
## novel_locations:anx_change -0.0001893  0.0001420  -1.332    0.183    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.7210     0.1326 -28.068
## (10,20]|(20,30]   -2.8406     0.1188 -23.904
## (20,30]|(30,40]   -2.0251     0.1113 -18.195
## (30,40]|(40,50]   -1.1130     0.1064 -10.458
## (40,50]|(50,60]   -0.1202     0.1042  -1.154
## (50,60]|(60,70]    1.2029     0.1052  11.431
## (60,70]|(70,80]    2.2445     0.1103  20.345
## (70,80]|(80,90]    3.3316     0.1223  27.232
## (80,90]|(90,100]   4.7250     0.1573  30.040
## (15004 observations deleted due to missingness)

## [1] "BIC: DEP_on_PA_by_lockdown, NL_on_PA_by_DEP_by_lockdown, NL_on_PA_by_anxiety_change"
##    df      BIC
## d1 13 39026.56
## d2 17 32034.59
## d3 13 15946.79

BIC Analysis

##                                      df       BIC
## complex_PA_RE                        21  14970.91
## simple_PA_RE                         17  14819.27
## complex_PA_NL                        21  13858.45
## simple_PA_NL                         17  13844.72
## RE_LD                                10  56402.75
## NL_LD                                10 226431.02
## PA_LD                                17  38946.92
## NA_LD                                17  38567.05
## PA_RE_LD                             19  32670.59
## PA_NL_LD                             19  31722.23
## PA_RE_PreLDRE_PostLD                 19  17781.88
## PA_RE_PreLDNL_PostLD                 19  18146.07
## PA_NL_PreLD_notch                    19  13860.78
## PA_NL_PostLD_notch                   19  17776.50
## PA_NL_LD_notch                       23  31717.08
## PA_NL_LD_notch_controldistance_100KM 23  29883.02
## Z_within_sub                         23  29893.75
## Z_within_sub_LD                      23  29917.83
## d1                                   13  39026.56
## d2                                   17  32034.59
## d3                                   13  15946.79