R Markdown Presentation / Presentacion en RMarkdown

library(ggplot2)
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
data <- diamonds[sample(nrow(diamonds), 2000,),]
## sample from diamonds data from ggplot2 / Muestra de la base diamonds de ggplot2
summary(data)
##      carat               cut      color      clarity        depth      
##  Min.   :0.2300   Fair     : 62   D:253   SI1    :494   Min.   :55.80  
##  1st Qu.:0.4000   Good     :182   E:387   VS2    :465   1st Qu.:61.10  
##  Median :0.7000   Very Good:440   F:346   SI2    :332   Median :61.80  
##  Mean   :0.7944   Premium  :501   G:445   VS1    :301   Mean   :61.76  
##  3rd Qu.:1.0200   Ideal    :815   H:278   VVS2   :180   3rd Qu.:62.60  
##  Max.   :3.6500                   I:201   VVS1   :130   Max.   :79.00  
##                                   J: 90   (Other): 98                  
##      table          price               x               y              z       
##  Min.   :50.1   Min.   :  353.0   Min.   :0.000   Min.   :0.00   Min.   :0.00  
##  1st Qu.:56.0   1st Qu.:  941.5   1st Qu.:4.710   1st Qu.:4.71   1st Qu.:2.90  
##  Median :57.0   Median : 2385.5   Median :5.690   Median :5.70   Median :3.52  
##  Mean   :57.4   Mean   : 3940.5   Mean   :5.718   Mean   :5.72   Mean   :3.53  
##  3rd Qu.:59.0   3rd Qu.: 5276.8   3rd Qu.:6.490   3rd Qu.:6.50   3rd Qu.:4.02  
##  Max.   :73.0   Max.   :18777.0   Max.   :9.530   Max.   :9.48   Max.   :6.38  
## 
grafico <- ggplot(data = data, aes(x = carat, y = price, color=cut)) + geom_smooth(alpha=.1, size=1) + labs(x="Carat", y="Price")
ggplotly(grafico , originalData = FALSE)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'