Objetivo

Identificar medidas de dispersión y visualizar datos de alumnos inscritos de una institución de educación superior.

Descripción

Cargar datos de los alumnos inscritos en el semestre Septiembre 2020-Enero 2021 y determinar medidas centrales media, mediana; encontrar medidas de dispersión varianza, desviación estándar y coeficiente de variación; visualizar datos con diagrama de cajas de alumnos por carrera y sus promedios para ubicar cuartiles, gráficas de dispersión de cada carrera y los promedios de cada alumno identificando el coeficiente de dispersión en cada conjunto de datos.

Datos: Se encuentran en la dirección: https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv

Fundamento teórico

Pendiente

Proceso

. Cargar librerías library (readr), (ggplot2), (dplyr)

library(readr)
library(dplyr)    # install.packages("dplyr")
library(ggplot2)

2. Cargar los datos de la dirección citada. read.csv()

datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv", encoding = "UTF-8")
  • Identificar los primeros seis registros
  • Identificar los últios seis registros
head(datos)
##   No..Control Alumno Semestre Cr..Apr. Carga Promedio  Carrera
## 1    20190001      1       11      198    19    80.21 SISTEMAS
## 2    20190002      2       11      235    10    84.33 SISTEMAS
## 3    20190003      3        9      235    10    95.25 SISTEMAS
## 4    20190004      4        9      226    19    95.00 SISTEMAS
## 5    20190005      5       10      231    14    82.32 SISTEMAS
## 6    20190006      6        9      212    23    95.02 SISTEMAS
tail(datos)
##      No..Control Alumno Semestre Cr..Apr. Carga Promedio        Carrera
## 5924    20195924   5924        2       27    28    92.83 ADMINISTRACION
## 5925    20195925   5925        7       94    13    80.95 ADMINISTRACION
## 5926    20195926   5926        5      103    32    92.68 ADMINISTRACION
## 5927    20195927   5927        4       79    34    86.18 ADMINISTRACION
## 5928    20195928   5928        5      108    32    90.48 ADMINISTRACION
## 5929    20195929   5929        7      169    32    92.33 ADMINISTRACION

3. Genera gráfica de caja de promedios de alumnos en función de las carreras para identificar cuartiles (1 gráfica)

  • Se requiere library(dplyr) para utilizar las funciones filter() y select()
ggplot(filter(datos, Promedio > 0), aes(x = Carrera, y = Promedio, color= Carrera ) ) +
    geom_boxplot() +
  labs(title = "Promedios de Administración")

4. Identificar medidas de tendencia central con histograma y líneas de sus media y mediana de cada carrera en función de los promedios (14 gráficas)

  • Carrera de ADMINISTRACION
  • Variables de interés es Carrera y Promedio
  • Se utiliza la función filter() de la librería dplyr para filtrar registros u observaciones de un conjunto de datos
administracion <- filter (datos, Promedio > 0 & Carrera == "ADMINISTRACION") 

mean(administracion$Promedio)
## [1] 89.44312
median(administracion$Promedio)
## [1] 89.605
ggplot(administracion, aes(Promedio)) +
  geom_histogram(bins = 30) +
  geom_vline(aes(xintercept = median(Promedio),
                  color = "mediana"),
              linetype = "solid",
              size = 2) +
    geom_vline(aes(xintercept = mean(Promedio),
                  color = "media"),
              linetype = "solid",
              size = 2) +
  labs(title = "Histograma de Promedio de Administración",subtitle =  paste("Media = ", round(mean(administracion$Promedio),2), ", Mediana = ", round(median(administracion$Promedio),2))) 

  • Carrera de SISTEMAS
  • Variables de interés es Carrera y Promedio

5. Identificar varianza y desviación estándar en una gráfica de dispersión de los promedios de cada carrera (14 gráficas)

n <- nrow(administracion)
ggplot(administracion, aes(x = 1:n, y = Promedio)) +
   geom_point() +
    labs(title = "Dispersión de Promedio de Administración", subtitle =  paste("Varianza = ", round(var(administracion$Promedio),2), ", DesvStd = ", round(sd(administracion$Promedio),2), ", C.V. = ",  round(sd(administracion$Promedio) / mean(administracion$Promedio) *  100, 2 )))

6. Determinar una tabla para todos los parámetros estadísticos solicitados

tabla <- datos %>%
    group_by (Carrera) %>%
    summarise(n = n(), media = mean(Promedio), mediana = median(Promedio), vari = var(Promedio), desvstd = sd(Promedio), cv = desvstd / media * 100)
tabla
## # A tibble: 14 x 7
##    Carrera                 n media mediana  vari desvstd    cv
##    <chr>               <int> <dbl>   <dbl> <dbl>   <dbl> <dbl>
##  1 ADMINISTRACION        497  74.5    88.4 1125.    33.5  45.0
##  2 ARQUITECTURA          675  70.1    85.4 1163.    34.1  48.7
##  3 BIOQUIMICA            441  68.6    82.8 1126.    33.6  48.9
##  4 CIVIL                 648  73.1    83.1  834.    28.9  39.5
##  5 ELECTRICA             280  60.7    81.8 1414.    37.6  61.9
##  6 ELECTRONICA           161  67.3    85.3 1324.    36.4  54.1
##  7 GESTION EMPRESARIAL   585  74.2    86.7 1013.    31.8  42.9
##  8 INDUSTRIAL            707  74.2    83.7  819.    28.6  38.6
##  9 INFORMATICA           101  60.6    83.6 1581.    39.8  65.6
## 10 MECANICA              301  61.7    80.7 1302.    36.1  58.4
## 11 MECATRONICA           432  70.8    83.4  981.    31.3  44.3
## 12 QUIMICA               568  72.6    84.6  996.    31.6  43.5
## 13 SISTEMAS              452  70.9    84.1 1081.    32.9  46.4
## 14 TIC                    81  66.6    81.7 1209.    34.8  52.2

7. Interpretación del CASO 5

  • Generar una descripción del caso de manera descriptiva (texto libre) de entre 180 y 200 palabras con ideas claras, ordenadas y con una descripción que explique los resultados, las gráficas mencionando cual de las carreras tiene menor dispersión (menor coeficiente de variación).
  • Comentarios finales