Preliminaries

# install.packages(ape)
# install.packages(phangorn)

library(ape)
library(phangorn)

Summary of Methods

In order to get the data for the 5x5 matrix, I had an excel sheet with nucleotide sequences for 5 differrent species. I arbitrarily chose 10 colums from that dataset. However , I made sure that there were at least 2 alleles per locus to ensue that they were all polymorphic. Next, I created pairwise connections between each of the species for the arbitrary sequences that I made. There are 10 connections in total since I had 5 species. Next, I found the PID for each match by counting the number of nucleotides they had which were the same and divided by the total amount (10). From this, I was able to create the pairwise similarities and dissimilarities matrices for use in this file.

Example 1: 3 Sequences

Similarity matrix

This matrix is based on the proportion of bases that are identical between sequence. This is often referred to as PID for Proportion Identical or Percentage Identical.

BLAST reports PID in its main output. PID is a very simple metric of similarity; more sophisticated measures are used in pratice.

Make a similarity matrix with the matrix() command. Note that I have to declare the number of rows

# Bad matrix 1
matrix(c(1.0, 0.5, 0.3,
         0.5, 1.0, 0.4,
         0.3, 0.4, 1.0))
##       [,1]
##  [1,]  1.0
##  [2,]  0.5
##  [3,]  0.3
##  [4,]  0.5
##  [5,]  1.0
##  [6,]  0.4
##  [7,]  0.3
##  [8,]  0.4
##  [9,]  1.0
# Good matrix
matrix(c(1.0, 0.5, 0.3,
         0.5, 1.0, 0.4,
         0.3, 0.4, 1.0),
       nrow = 3)
##      [,1] [,2] [,3]
## [1,]  1.0  0.5  0.3
## [2,]  0.5  1.0  0.4
## [3,]  0.3  0.4  1.0

Store the matrix

my_sim_mat <- matrix(c(1.0, 0.5, 0.3,
                       0.5, 1.0, 0.4,
                       0.3, 0.4, 1.0),
                 nrow = 3,
                 byrow = T)

Label the matrix with row.names() and colnames()

row.names(my_sim_mat) <- c("G","T","M")
colnames(my_sim_mat) <- c("G","T","M")

Disimilarity matrix

Similarity, disimilarity, and distance are all related. Most methods use distance, not similarity.

We can do vectorized math to recalculate the matrix

my_dist_mat <- 1-my_sim_mat

Convert to R’s distance format

my_dist_mat2 <- as.dist(my_dist_mat)

Build a neighbor-joining (nj) tree

Neighbor Joining is one of the most common ways to build a tree using molecular data that’s been converted to sequences; its one of the options within BLAST.

Build the tree with nj()

my_nj <- ape::nj(my_dist_mat2)

Plot the tree as an “unrooted” tree

plot(my_nj, "unrooted")

Plot the tree as an “rooted” tree

plot(my_nj)

UPGMA/WPGMA are other algorithms that work with distance matrices. They are not commonly used now but are useful for teaching becaues they can easily be done by hand on small datasets.

my_upgma <- phangorn::upgma(my_dist_mat2)

Plot the UPGMA tree

plot(my_upgma)

Compare the rooted NJ and the UPGMA

par(mfrow = c(1,2))
plot(my_nj)
plot(my_upgma)

WPGMA tree

plot(wpgma(my_dist_mat2))

Minimum evolution tree

plot(fastme.ols(my_dist_mat2))

Example 2: 5 Sequences

Build the matrix.

Be sure to add the nrow = … statemetn.

five_sim_mat <- matrix(c(1.0,     0.0,  0.0,  0.0,  0.0,        
                         0.8,   1.0,    0.0,  0.0,  0.0,                
                         0.8,   0.8,    1.0,    0.0,  0.0,      
                         0.0,     0.1,  0.2,    1.0,    0.0,        
                         0.3,   0.1,    0.5,    0.7,    1.0), nrow = 5)

Name things

row.names(five_sim_mat) <- c("ME","B","G", "T", "MW") ######
colnames(five_sim_mat) <- c("ME","B","G", "T", "MW")  ######

Turn into a distnace matrix. This is 2 steps and requires the as.dist() command

five_dist_mat <- 1-five_sim_mat
five_dist_mat2 <- as.dist(five_dist_mat)

Neighbor-Joining tree with nj()

five_nj <- ape::nj(five_dist_mat2)

Plot unrooted NJ tree

plot(five_nj, "unrooted")

Plot rooted NJ tree

plot(five_nj)

Build UPGMA tree

five_upgma <- phangorn::upgma(five_dist_mat2)

Plot UPGMA tree

plot(five_upgma)

Compare rooted NJ and UPGMA plots

par(mfrow = c(1,2))
plot(five_nj)
plot(five_upgma)

Build WPGMA tree

plot(wpgma(five_dist_mat2))

Compare rooted WPGMA and UPGMA plots

par(mfrow = c(1,2))
plot(wpgma(five_dist_mat2))
plot(five_upgma)

Build Minimum evolution tree

plot(fastme.ols(five_dist_mat2))