dr.sc. Luka Šikić
15 listopad, 2020
import pandas as pd
# ucitaj CSV file sa URL
drinks = pd.read_csv('https://raw.githubusercontent.com/sinanuozdemir/principles_of_data_science/master/data/chapter_2/drinks.csv')
# pregledaj prvih 10 redova
#drinks.head(10) | country | beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent |
|---|---|---|---|---|---|
| Afghanistan | 0 | 0 | 0 | 0.0 | AS |
| Albania | 89 | 132 | 54 | 4.9 | EU |
| Algeria | 25 | 0 | 14 | 0.7 | AF |
| Andorra | 245 | 138 | 312 | 12.4 | EU |
| Angola | 217 | 57 | 45 | 5.9 | AF |
| Antigua & Barbuda | 102 | 128 | 45 | 4.9 | NaN |
| Argentina | 193 | 25 | 221 | 8.3 | SA |
| Armenia | 21 | 179 | 11 | 3.8 | EU |
| Australia | 261 | 72 | 212 | 10.4 | OC |
| Austria | 279 | 75 | 191 | 9.7 | EU |
## count 170
## unique 5
## top AF
## freq 53
## Name: continent, dtype: object
## count 193.000000
## mean 106.160622
## std 101.143103
## min 0.000000
## 25% 20.000000
## 50% 76.000000
## 75% 188.000000
## max 376.000000
## Name: beer_servings, dtype: float64
NOMINALNI
ORDINALNI
INTERVALNI
OMJERNI
import numpy
# anketa o sreci na ljestvici 1-5
results = [5, 4, 3, 4, 5, 3, 2, 5, 3, 2, 1, 4, 5, 3, 4, 4, 5, 4, 2, 1,
4, 5, 4, 3, 2, 4, 4, 5, 4, 3, 2, 1]
# sortiraj rezultate
sorted_results = sorted(results)
print(sorted_results)
# pogledaj prosjek i medijan## [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5]
## prosjek: 3.44
## medijan: 4.0
# temperatura frizidera u fahrenheitima mjerena svakih sat vremena
temps = [31, 32, 32, 31, 28, 29, 31, 38, 32, 31, 30, 29, 30, 31, 26]
# pogledaj prosjek i medijan
print("prosjek:",round(numpy.mean(temps),2))## prosjek: 30.73
## medijan: 31.0
squared_differences = []
# napravi praznu listu
mean = numpy.mean(temps)
# spremi prosjek u objekt
for temperature in temps:
difference = temperature - mean
# definiraj funkciju za izracun udaljenosti (temperature) od prosjeka
squared_difference = difference**2
# kvadriraj razliku
squared_differences.append(squared_difference)
# dodaj listi
average_squared_difference = numpy.mean(squared_differences)
# izracunaj varijancu
standard_deviation = numpy.sqrt(average_squared_difference)
# izracunaj standardnu devijaciju
print("stdev:",round(standard_deviation,2)) ## stdev: 2.52
# temperatura frizidera u fahrenheitima mjerena svakih sat vremena
temps = [31, 32, 32, 31, 28, 29, 31, 38, 32, 31, 30, 29, 30, 31, 26]
# izracunaj geometrijsku sredinu
num_items = len(temps)
product = 1.
for temperature in temps:
product *= temperature
geometric_mean = product**(1./num_items)
# prikazi rezultat
print("geometrijska sredina:",geometric_mean)## geometrijska sredina: 30.63473484374659
POTENCIJAL BD ZA UNAPRIJEĐENJE DRUŠTVENIH (I HUMANISTIČKIH) ZNANOSTI
IZVAZOVI BD