I. Initialization Block
Initializing RStudio
If you execute the code block below, RStudio will prompt you to install Mosaic if needed.
library(mosaic)
II. Exercises
A baseball card company claims that 25% of its cards are rookies, 65% are veterans but not All-Stars, and 10% are veteran All-Stars. Suppose a random sample of 200 cards has 70 rookies, 120 veterans, and 10 All-Stars. Is the company’s claimed distribution credible? Test using \(\chi^2\) GOF with a 0.05 level of significance.
A supposedly fair die is rolled 50 times with the following results: 9 ones, 15 twos, 9 threes, 8 fours, 6 fives and 13 sixes. Test at the 0.05 level whether the die is actually fair using \(\chi^2\) GOF.
Helena buys custom M&M’s for a bridal shower she’s throwing for her sister. She orders 10% yellow, 20% pale blue, 30% red and 40% pink. When she receives her 10 lb. package, she sees almost not yellow and far too many pale blue. She randomly selects 200 of the M&M’s and finds the following observed counts: \[\begin{array}{cccc}\text{Yellow}&\text{Blue}&\text{Red}&\text{Pink}\\ \hline
8&54&64&74\end{array}\]
III. Code Blocks
observed = c(11, 11, 6)
expected = c(0.5, 0.25, 0.25)
xchisq.test(x = observed,
p = expected)
pups = sample(c("black","blue","fawn"), 28, replace=TRUE, prob = c(0.5, 0.25, 0.25))
tally(pups)
N = 0
# Do the randomization 1,000 time
for (j in 1:1000) {
# Create random sample of 28 pups
pups = sample(c("black","blue","fawn"), 28, replace=TRUE, prob = c(0.5, 0.25, 0.25))
black = 0
blue = 0
fawn = 0
# Count number of pups for each color
for (i in 1:28) {
if (pups[i] == "black") { black = black + 1}
if (pups[i] == "blue") { blue = blue + 1}
if (pups[i] == "fawn") { fawn = fawn + 1}
}
# Calculate Chi-Squared statistic
chiObserved = (black - 14)^2/14 +(blue - 7)^2/7+(fawn - 7)^2/7
if ( chiObserved > 43/14) {N = N + 1}
}
N
observed = c(161,39)
expected = c(.75,.25)
xchisq.test(x = observed,
p = expected)
observed = c(11, 29, 16, 14, 17, 23, 9)
expected = c(1/7,1/7,1/7,1/7,1/7,1/7,1/7)
xchisq.test(x = observed,
p = expected)
LS0tDQp0aXRsZTogIkNoaS1TcXVhcmVkIEdvb2RuZXNzIG9mIEZpdCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkkuIEluaXRpYWxpemF0aW9uIEJsb2NrPC9zcGFuPg0KDQo8ZGl2IHN0eWxlPSJmbG9hdDpjZW50ZXI7IG1hcmdpbjogOHB4OyBib3JkZXI6MnB4IGJsYWNrIHNvbGlkOyBwYWRkaW5nOiAwcHggMTBweCA1cHgiPg0KIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+SW5pdGlhbGl6aW5nIFJTdHVkaW88L3NwYW4+DQpJZiB5b3UgZXhlY3V0ZSB0aGUgY29kZSBibG9jayBiZWxvdywgUlN0dWRpbyB3aWxsIHByb21wdCB5b3UgdG8gaW5zdGFsbCAqKk1vc2FpYyoqIGlmIG5lZWRlZC4NCmBgYHtyfQ0KbGlicmFyeShtb3NhaWMpDQpgYGANCjwvZGl2Pg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPklJLiBFeGVyY2lzZXM8L3NwYW4+DQoNCjEuIEEgYmFzZWJhbGwgY2FyZCBjb21wYW55IGNsYWltcyB0aGF0IDI1JSBvZiBpdHMgY2FyZHMgYXJlIHJvb2tpZXMsIDY1JSBhcmUgdmV0ZXJhbnMgYnV0IG5vdCBBbGwtU3RhcnMsIGFuZCAxMCUgYXJlIHZldGVyYW4gQWxsLVN0YXJzLiBTdXBwb3NlIGEgcmFuZG9tIHNhbXBsZSBvZiAyMDAgY2FyZHMgaGFzIDcwIHJvb2tpZXMsIDEyMCB2ZXRlcmFucywgYW5kIDEwIEFsbC1TdGFycy4gSXMgdGhlIGNvbXBhbnkncyBjbGFpbWVkIGRpc3RyaWJ1dGlvbiBjcmVkaWJsZT8gVGVzdCB1c2luZyAkXGNoaV4yJCBHT0Ygd2l0aCBhIDAuMDUgbGV2ZWwgb2Ygc2lnbmlmaWNhbmNlLg0KDQoyLiBBIHN1cHBvc2VkbHkgZmFpciBkaWUgaXMgcm9sbGVkIDUwIHRpbWVzIHdpdGggdGhlIGZvbGxvd2luZyByZXN1bHRzOiA5IG9uZXMsIDE1IHR3b3MsIDkgdGhyZWVzLCA4IGZvdXJzLCA2IGZpdmVzIGFuZCAxMyBzaXhlcy4gVGVzdCBhdCB0aGUgMC4wNSBsZXZlbCB3aGV0aGVyIHRoZSBkaWUgaXMgYWN0dWFsbHkgZmFpciB1c2luZyAkXGNoaV4yJCBHT0YuDQoNCjMuIEhlbGVuYSBidXlzIGN1c3RvbSBNJk0ncyBmb3IgYSBicmlkYWwgc2hvd2VyIHNoZSdzIHRocm93aW5nIGZvciBoZXIgc2lzdGVyLiBTaGUgb3JkZXJzICAxMCUgeWVsbG93LCAyMCUgcGFsZSBibHVlLCAzMCUgcmVkIGFuZCA0MCUgcGluay4gV2hlbiBzaGUgcmVjZWl2ZXMgaGVyIDEwIGxiLiBwYWNrYWdlLCBzaGUgc2VlcyBhbG1vc3Qgbm90IHllbGxvdyBhbmQgZmFyIHRvbyBtYW55IHBhbGUgYmx1ZS4gU2hlIHJhbmRvbWx5IHNlbGVjdHMgMjAwIG9mIHRoZSBNJk0ncyBhbmQgZmluZHMgdGhlIGZvbGxvd2luZyBvYnNlcnZlZCBjb3VudHM6DQokJFxiZWdpbnthcnJheX17Y2NjY31cdGV4dHtZZWxsb3d9Jlx0ZXh0e0JsdWV9Jlx0ZXh0e1JlZH0mXHRleHR7UGlua31cXCBcaGxpbmUNCjgmNTQmNjQmNzRcZW5ke2FycmF5fSQkDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SUlJLiBDb2RlIEJsb2Nrczwvc3Bhbj4NCg0KYGBge3J9DQpvYnNlcnZlZCA9IGMoMTEsIDExLCA2KQ0KZXhwZWN0ZWQgPSBjKDAuNSwgMC4yNSwgMC4yNSkNCmBgYA0KDQoNCmBgYHtyfQ0KeGNoaXNxLnRlc3QoeCA9IG9ic2VydmVkLA0KICAgICAgICAgICBwID0gZXhwZWN0ZWQpDQpgYGANCg0KDQpgYGB7cn0NCnB1cHMgPSBzYW1wbGUoYygiYmxhY2siLCJibHVlIiwiZmF3biIpLCAyOCwgcmVwbGFjZT1UUlVFLCBwcm9iID0gYygwLjUsIDAuMjUsIDAuMjUpKQ0KdGFsbHkocHVwcykNCmBgYA0KDQoNCmBgYHtyfQ0KTiA9IDANCiMgRG8gdGhlIHJhbmRvbWl6YXRpb24gMSwwMDAgdGltZQ0KZm9yIChqIGluIDE6MTAwMCkgew0KIyBDcmVhdGUgcmFuZG9tIHNhbXBsZSBvZiAyOCBwdXBzDQpwdXBzID0gc2FtcGxlKGMoImJsYWNrIiwiYmx1ZSIsImZhd24iKSwgMjgsIHJlcGxhY2U9VFJVRSwgcHJvYiA9IGMoMC41LCAwLjI1LCAwLjI1KSkNCmJsYWNrID0gMA0KYmx1ZSA9IDANCmZhd24gPSAwDQojIENvdW50IG51bWJlciBvZiBwdXBzIGZvciBlYWNoIGNvbG9yDQpmb3IgKGkgaW4gMToyOCkgew0KICBpZiAocHVwc1tpXSA9PSAiYmxhY2siKSB7IGJsYWNrID0gYmxhY2sgKyAxfQ0KICBpZiAocHVwc1tpXSA9PSAiYmx1ZSIpIHsgYmx1ZSA9IGJsdWUgKyAxfQ0KICBpZiAocHVwc1tpXSA9PSAiZmF3biIpIHsgZmF3biA9IGZhd24gKyAxfQ0KfQ0KIyBDYWxjdWxhdGUgQ2hpLVNxdWFyZWQgc3RhdGlzdGljDQpjaGlPYnNlcnZlZCA9IChibGFjayAtIDE0KV4yLzE0ICsoYmx1ZSAtIDcpXjIvNysoZmF3biAtIDcpXjIvNw0KaWYgKCBjaGlPYnNlcnZlZCA+IDQzLzE0KSB7TiA9IE4gKyAxfQ0KfSANCk4NCmBgYA0KDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgPSBjKDE2MSwzOSkNCmV4cGVjdGVkID0gYyguNzUsLjI1KQ0KYGBgDQoNCg0KYGBge3J9DQp4Y2hpc3EudGVzdCh4ID0gb2JzZXJ2ZWQsDQogICAgICAgICAgIHAgPSBleHBlY3RlZCkNCmBgYA0KDQoNCg0KDQpgYGB7cn0NCm9ic2VydmVkID0gYygxMSwgMjksIDE2LCAxNCwgMTcsIDIzLCA5KQ0KZXhwZWN0ZWQgPSBjKDEvNywxLzcsMS83LDEvNywxLzcsMS83LDEvNykNCmBgYA0KDQoNCmBgYHtyfQ0KeGNoaXNxLnRlc3QoeCA9IG9ic2VydmVkLA0KICAgICAgICAgICBwID0gZXhwZWN0ZWQpDQpgYGANCg0KDQo=