Ejercicio Materia Orgánica

library(ape)
set.seed(12345)
MO <- rnorm(n = 150,mean = 3,sd = 0.5)
xy <- expand.grid(x=seq(1,10),y=seq(1,15))

plot(xy,col=MO,pch=19)

as.data.frame(MO)
##           MO
## 1   3.292764
## 2   3.354733
## 3   2.945348
## 4   2.773251
## 5   3.302944
## 6   2.091022
## 7   3.315049
## 8   2.861908
## 9   2.857920
## 10  2.540339
## 11  2.941876
## 12  3.908656
## 13  3.185314
## 14  3.260108
## 15  2.624734
## 16  3.408450
## 17  2.556821
## 18  2.834211
## 19  3.560356
## 20  3.149362
## 21  3.389811
## 22  3.727893
## 23  2.677836
## 24  2.223431
## 25  2.201145
## 26  3.902549
## 27  2.759176
## 28  3.310190
## 29  3.306062
## 30  2.918845
## 31  3.405937
## 32  4.098417
## 33  4.024595
## 34  3.816223
## 35  3.127136
## 36  3.245594
## 37  2.837957
## 38  2.168975
## 39  3.883867
## 40  3.012901
## 41  3.564255
## 42  1.809821
## 43  2.469867
## 44  3.468570
## 45  3.427226
## 46  3.730365
## 47  2.293451
## 48  3.283702
## 49  3.291594
## 50  2.346601
## 51  2.729807
## 52  3.973846
## 53  3.026795
## 54  3.175831
## 55  2.664512
## 56  3.138977
## 57  3.345586
## 58  3.411898
## 59  4.072533
## 60  1.826528
## 61  3.074796
## 62  2.328734
## 63  3.276652
## 64  3.794981
## 65  2.706560
## 66  2.083811
## 67  3.444070
## 68  3.796744
## 69  3.258427
## 70  2.352164
## 71  3.027308
## 72  2.607675
## 73  2.475324
## 74  4.165256
## 75  3.701353
## 76  3.471300
## 77  3.413129
## 78  2.594230
## 79  3.238124
## 80  3.510629
## 81  3.322692
## 82  3.521572
## 83  2.847815
## 84  4.238555
## 85  3.485610
## 86  3.933550
## 87  3.336021
## 88  2.846023
## 89  3.268262
## 90  3.412435
## 91  2.518049
## 92  2.572459
## 93  3.943473
## 94  2.804090
## 95  2.509684
## 96  3.343666
## 97  2.747478
## 98  4.078860
## 99  2.700101
## 100 2.652727
## 101 3.111963
## 102 2.421888
## 103 3.211209
## 104 2.337622
## 105 3.070542
## 106 2.731976
## 107 2.844197
## 108 3.778055
## 109 2.775983
## 110 3.160562
## 111 2.384914
## 112 2.337971
## 113 3.630621
## 114 3.659616
## 115 2.959623
## 116 2.747455
## 117 2.973923
## 118 3.314430
## 119 4.090001
## 120 2.965491
## 121 3.772432
## 122 3.660726
## 123 3.161076
## 124 3.765478
## 125 2.789380
## 126 2.420589
## 127 2.077316
## 128 3.578663
## 129 1.938225
## 130 2.401984
## 131 3.821096
## 132 3.441827
## 133 3.262438
## 134 2.407670
## 135 4.327894
## 136 2.476043
## 137 2.494439
## 138 3.334461
## 139 3.064589
## 140 2.788712
## 141 2.429868
## 142 2.353142
## 143 2.702651
## 144 2.249593
## 145 3.007928
## 146 3.270085
## 147 2.226354
## 148 3.424826
## 149 3.448007
## 150 3.069345
xymatrix <- as.matrix(dist(cbind(xy$x, xy$y)))
xymatrix_inv <- 1/xymatrix
diag(xymatrix_inv) <- 0
xymatrix_inv[1:10, 1:10]
##            1         2         3         4         5         6         7
## 1  0.0000000 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000 0.1666667
## 2  1.0000000 0.0000000 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000
## 3  0.5000000 1.0000000 0.0000000 1.0000000 0.5000000 0.3333333 0.2500000
## 4  0.3333333 0.5000000 1.0000000 0.0000000 1.0000000 0.5000000 0.3333333
## 5  0.2500000 0.3333333 0.5000000 1.0000000 0.0000000 1.0000000 0.5000000
## 6  0.2000000 0.2500000 0.3333333 0.5000000 1.0000000 0.0000000 1.0000000
## 7  0.1666667 0.2000000 0.2500000 0.3333333 0.5000000 1.0000000 0.0000000
## 8  0.1428571 0.1666667 0.2000000 0.2500000 0.3333333 0.5000000 1.0000000
## 9  0.1250000 0.1428571 0.1666667 0.2000000 0.2500000 0.3333333 0.5000000
## 10 0.1111111 0.1250000 0.1428571 0.1666667 0.2000000 0.2500000 0.3333333
##            8         9        10
## 1  0.1428571 0.1250000 0.1111111
## 2  0.1666667 0.1428571 0.1250000
## 3  0.2000000 0.1666667 0.1428571
## 4  0.2500000 0.2000000 0.1666667
## 5  0.3333333 0.2500000 0.2000000
## 6  0.5000000 0.3333333 0.2500000
## 7  1.0000000 0.5000000 0.3333333
## 8  0.0000000 1.0000000 0.5000000
## 9  1.0000000 0.0000000 1.0000000
## 10 0.5000000 1.0000000 0.0000000
Moran.I(MO, xymatrix_inv)
## $observed
## [1] -0.009650003
## 
## $expected
## [1] -0.006711409
## 
## $sd
## [1] 0.007694112
## 
## $p.value
## [1] 0.7025151

Ejercicio Conductividad Eléctrica

library(readxl)
BD_MORAN_1_ <- read_excel("D:/Kevin/Trabajos/Computacion estadistica/BD_MORAN (1).xlsx")
#View(BD_MORAN_1_)
head(BD_MORAN_1_, n=20)
## # A tibble: 20 x 7
##        z X_WGS84 Y_WGS84 CEa_075 CEa_150   X_MCB   Y_MCE
##    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1  194.   -72.5    4.20    6.17    18.1 843499. 955943.
##  2  194.   -72.5    4.20    6.21    17.7 843499. 955943.
##  3  194.   -72.5    4.20    6.37    18.6 843499. 955944.
##  4  194.   -72.5    4.20    6.33    18.2 843498. 955944.
##  5  194.   -72.5    4.20    6.41    18.2 843498. 955944.
##  6  194.   -72.5    4.20    6.37    18.8 843498. 955944.
##  7  194.   -72.5    4.20    6.33    18.0 843498. 955944.
##  8  193.   -72.5    4.20    6.72    18.6 843497. 955944.
##  9  193.   -72.5    4.20    6.48    18.7 843497. 955944.
## 10  193.   -72.5    4.20    6.60    18.4 843497. 955944.
## 11  193.   -72.5    4.20    6.80    18.4 843496. 955944.
## 12  193.   -72.5    4.20    6.84    18.3 843496. 955944.
## 13  193.   -72.5    4.20    7.11    18.4 843496. 955944.
## 14  193.   -72.5    4.20    6.52    18.2 843496. 955944.
## 15  193.   -72.5    4.20    6.52    18.3 843495. 955944.
## 16  193.   -72.5    4.20    7.03    18.8 843495. 955944.
## 17  193.   -72.5    4.20    7.11    18.1 843495. 955944.
## 18  193.   -72.5    4.20    7.03    18.9 843495. 955944.
## 19  193.   -72.5    4.20    7.07    19.4 843494. 955944.
## 20  193.   -72.5    4.20    7.23    19.3 843494. 955944.
Longitud <- BD_MORAN_1_$X_WGS84
Latitud <- BD_MORAN_1_$Y_WGS84  
plot(Longitud,Latitud,col ="blue",cex = 0.2,main = "Gráfico de Puntos de muestra")

Longitud <- BD_MORAN_1_$X_WGS84
Latitud <- BD_MORAN_1_$Y_WGS84  
plot(Longitud,Latitud,col =BD_MORAN_1_$CEa_075,cex = 0.5,main = "Conductividad Eléctrica a 75cm de profundidad")

Índice de Moran - CE a 75cm [primeras 5000 muestras]

library(ape)
Longitud <- BD_MORAN_1_$X_WGS84[1:5000]
Latitud <- BD_MORAN_1_$Y_WGS84[1:5000]
Ce_dist <- as.matrix(dist(cbind(Longitud, Latitud)))
dim(Ce_dist)
## [1] 5000 5000
Ce_dist_inv <- 1/Ce_dist
Ce_dist_inv[is.infinite(Ce_dist_inv)] <- 0
diag(Ce_dist_inv) <- 0
CEa_075_1 <- BD_MORAN_1_$CEa_075[1:5000]
Ce_dist_inv[1:10,1:10]
##            1         2         3         4         5         6         7
## 1       0.00 406473.84 183582.68 136552.66  99512.00  80767.51  66276.45
## 2  406473.84      0.00 334028.09 205286.88 131603.44 100690.59  79119.77
## 3  183582.68 334028.09      0.00 532631.20 217163.07 144140.71 103677.22
## 4  136552.66 205286.88 532631.20      0.00 366652.29 197620.35 128735.53
## 5   99512.00 131603.44 217163.07 366652.29      0.00 428663.73 198393.56
## 6   80767.51 100690.59 144140.71 197620.35 428663.73      0.00 369323.16
## 7   66276.45  79119.77 103677.22 128735.53 198393.56 369323.16      0.00
## 8   57404.68  66798.00  83495.12  99016.99 135648.88 198443.56 428837.13
## 9   49363.96  56156.93  67505.83  77303.00  97952.59 126960.00 193437.71
## 10  44785.68  50307.49  59227.30  66636.81  81434.82 100529.27 138109.95
##            8         9        10
## 1   57404.68  49363.96  44785.68
## 2   66798.00  56156.93  50307.49
## 3   83495.12  67505.83  59227.30
## 4   99016.99  77303.00  66636.81
## 5  135648.88  97952.59  81434.82
## 6  198443.56 126960.00 100529.27
## 7  428837.13 193437.71 138109.95
## 8       0.00 352381.47 203715.00
## 9  352381.47      0.00 482860.83
## 10 203715.00 482860.83      0.00
Moran.I(CEa_075_1,Ce_dist_inv)
## $observed
## [1] 0.5843435
## 
## $expected
## [1] -0.00020004
## 
## $sd
## [1] 0.001784892
## 
## $p.value
## [1] 0

Índice de Moran - CE a 75cm [de la muestra 5001 a la 10000]

library(ape)
Longitud <- BD_MORAN_1_$X_WGS84[5001:10000]
Latitud <- BD_MORAN_1_$Y_WGS84[5001:10000]
Ce_dist <- as.matrix(dist(cbind(Longitud, Latitud)))
dim(Ce_dist)
## [1] 5000 5000
Ce_dist_inv <- 1/Ce_dist
Ce_dist_inv[is.infinite(Ce_dist_inv)] <- 0
diag(Ce_dist_inv) <- 0
CEa_075_1 <- BD_MORAN_1_$CEa_075[5001:10000]
Ce_dist_inv[1:10,1:10]
##            1         2         3         4         5         6         7
## 1       0.00 211114.28 105557.14  67146.52  50907.07  38565.37  32827.27
## 2  211114.28      0.00 211114.28  98463.65  67083.19  47184.82  38871.55
## 3  105557.14 211114.28      0.00 184526.97  98327.51  60766.16  47643.88
## 4   67146.52  98463.65 184526.97      0.00 210489.47  90601.53  64226.45
## 5   50907.07  67083.19  98327.51 210489.47      0.00 159066.16  92427.56
## 6   38565.37  47184.82  60766.16  90601.53 159066.16      0.00 220624.26
## 7   32827.27  38871.55  47643.88  64226.45  92427.56 220624.26      0.00
## 8   27536.92  31667.42  37255.68  46679.98  59981.23  96290.96 170864.05
## 9   24166.24  27290.06  31341.34  37753.41  46004.28  64723.18  91593.34
## 10  21364.07  23769.39  26785.02  31332.98  36812.50  47897.33  61179.29
##            8         9        10
## 1   27536.92  24166.24  21364.07
## 2   31667.42  27290.06  23769.39
## 3   37255.68  31341.34  26785.02
## 4   46679.98  37753.41  31332.98
## 5   59981.23  46004.28  36812.50
## 6   96290.96  64723.18  47897.33
## 7  170864.05  91593.34  61179.29
## 8       0.00 197424.61  95303.43
## 9  197424.61      0.00 184244.25
## 10  95303.43 184244.25      0.00
Moran.I(CEa_075_1,Ce_dist_inv)
## $observed
## [1] 0.6230116
## 
## $expected
## [1] -0.00020004
## 
## $sd
## [1] 0.001710357
## 
## $p.value
## [1] 0

Índice de Moran - CE a 75cm [de la muestra 10001 a la 18526]

library(ape)
Longitud <- BD_MORAN_1_$X_WGS84[10001:18526]
Latitud <- BD_MORAN_1_$Y_WGS84[10001:18526]
Ce_dist <- as.matrix(dist(cbind(Longitud, Latitud)))
dim(Ce_dist)
## [1] 8526 8526
Ce_dist_inv <- 1/Ce_dist
Ce_dist_inv[is.infinite(Ce_dist_inv)] <- 0
diag(Ce_dist_inv) <- 0
CEa_075_1 <- BD_MORAN_1_$CEa_075[10001:18526]
Ce_dist_inv[1:10,1:10]
##           1         2         3         4         5         6         7
## 1      0.00  96784.06  60123.33  49109.46  38403.86  32791.83  27656.57
## 2  96784.06      0.00 158725.16  99696.88  63666.71  49595.41  38721.36
## 3  60123.33 158725.16      0.00 268081.10 106308.11  72134.49  51215.40
## 4  49109.46  99696.88 268081.10      0.00 176167.77  98689.57  63310.51
## 5  38403.86  63666.71 106308.11 176167.77      0.00 224397.51  98826.34
## 6  32791.83  49595.41  72134.49  98689.57 224397.51      0.00 176604.04
## 7  27656.57  38721.36  51215.40  63310.51  98826.34 176604.04      0.00
## 8  24230.57  32322.75  40588.04  47829.52  65654.77  92809.07 195601.85
## 9  21273.47  27266.74  32922.26  37531.37  47691.77  60563.48  92172.36
## 10 17129.70  20813.31  23954.27  26304.66  30921.66  35863.50  45001.75
##            8         9       10
## 1   24230.57  21273.47 17129.70
## 2   32322.75  27266.74 20813.31
## 3   40588.04  32922.26 23954.27
## 4   47829.52  37531.37 26304.66
## 5   65654.77  47691.77 30921.66
## 6   92809.07  60563.48 35863.50
## 7  195601.85  92172.36 45001.75
## 8       0.00 174312.08 58448.07
## 9  174312.08      0.00 87930.51
## 10  58448.07  87930.51     0.00
Moran.I(CEa_075_1,Ce_dist_inv)
## $observed
## [1] 0.4493558
## 
## $expected
## [1] -0.0001173021
## 
## $sd
## [1] 0.001024234
## 
## $p.value
## [1] 0
Longitud <- BD_MORAN_1_$X_WGS84
Latitud <- BD_MORAN_1_$Y_WGS84  
plot(Longitud,Latitud,col =BD_MORAN_1_$CEa_150,cex = 0.5,main = "Conductividad Eléctrica a 150cm de profundidad")

Índice de Moran - CE a 150cm [primeras 5000 muestras]

library(ape)
Longitud <- BD_MORAN_1_$X_WGS84[1:5000]
Latitud <- BD_MORAN_1_$Y_WGS84[1:5000]
Ce_dist <- as.matrix(dist(cbind(Longitud, Latitud)))
dim(Ce_dist)
## [1] 5000 5000
Ce_dist_inv <- 1/Ce_dist
Ce_dist_inv[is.infinite(Ce_dist_inv)] <- 0
diag(Ce_dist_inv) <- 0
CEa_150_1 <- BD_MORAN_1_$CEa_150[1:5000]
Ce_dist_inv[1:10,1:10]
##            1         2         3         4         5         6         7
## 1       0.00 406473.84 183582.68 136552.66  99512.00  80767.51  66276.45
## 2  406473.84      0.00 334028.09 205286.88 131603.44 100690.59  79119.77
## 3  183582.68 334028.09      0.00 532631.20 217163.07 144140.71 103677.22
## 4  136552.66 205286.88 532631.20      0.00 366652.29 197620.35 128735.53
## 5   99512.00 131603.44 217163.07 366652.29      0.00 428663.73 198393.56
## 6   80767.51 100690.59 144140.71 197620.35 428663.73      0.00 369323.16
## 7   66276.45  79119.77 103677.22 128735.53 198393.56 369323.16      0.00
## 8   57404.68  66798.00  83495.12  99016.99 135648.88 198443.56 428837.13
## 9   49363.96  56156.93  67505.83  77303.00  97952.59 126960.00 193437.71
## 10  44785.68  50307.49  59227.30  66636.81  81434.82 100529.27 138109.95
##            8         9        10
## 1   57404.68  49363.96  44785.68
## 2   66798.00  56156.93  50307.49
## 3   83495.12  67505.83  59227.30
## 4   99016.99  77303.00  66636.81
## 5  135648.88  97952.59  81434.82
## 6  198443.56 126960.00 100529.27
## 7  428837.13 193437.71 138109.95
## 8       0.00 352381.47 203715.00
## 9  352381.47      0.00 482860.83
## 10 203715.00 482860.83      0.00
Moran.I(CEa_150_1,Ce_dist_inv)
## $observed
## [1] 0.3531011
## 
## $expected
## [1] -0.00020004
## 
## $sd
## [1] 0.001784437
## 
## $p.value
## [1] 0

Índice de Moran - CE a 150cm [de la muestra 5001 a la 10000]

library(ape)
Longitud <- BD_MORAN_1_$X_WGS84[5001:10000]
Latitud <- BD_MORAN_1_$Y_WGS84[5001:10000]
Ce_dist <- as.matrix(dist(cbind(Longitud, Latitud)))
dim(Ce_dist)
## [1] 5000 5000
Ce_dist_inv <- 1/Ce_dist
Ce_dist_inv[is.infinite(Ce_dist_inv)] <- 0
diag(Ce_dist_inv) <- 0
CEa_150_1 <- BD_MORAN_1_$CEa_150[5001:10000]
Ce_dist_inv[1:10,1:10]
##            1         2         3         4         5         6         7
## 1       0.00 211114.28 105557.14  67146.52  50907.07  38565.37  32827.27
## 2  211114.28      0.00 211114.28  98463.65  67083.19  47184.82  38871.55
## 3  105557.14 211114.28      0.00 184526.97  98327.51  60766.16  47643.88
## 4   67146.52  98463.65 184526.97      0.00 210489.47  90601.53  64226.45
## 5   50907.07  67083.19  98327.51 210489.47      0.00 159066.16  92427.56
## 6   38565.37  47184.82  60766.16  90601.53 159066.16      0.00 220624.26
## 7   32827.27  38871.55  47643.88  64226.45  92427.56 220624.26      0.00
## 8   27536.92  31667.42  37255.68  46679.98  59981.23  96290.96 170864.05
## 9   24166.24  27290.06  31341.34  37753.41  46004.28  64723.18  91593.34
## 10  21364.07  23769.39  26785.02  31332.98  36812.50  47897.33  61179.29
##            8         9        10
## 1   27536.92  24166.24  21364.07
## 2   31667.42  27290.06  23769.39
## 3   37255.68  31341.34  26785.02
## 4   46679.98  37753.41  31332.98
## 5   59981.23  46004.28  36812.50
## 6   96290.96  64723.18  47897.33
## 7  170864.05  91593.34  61179.29
## 8       0.00 197424.61  95303.43
## 9  197424.61      0.00 184244.25
## 10  95303.43 184244.25      0.00
Moran.I(CEa_150_1,Ce_dist_inv)
## $observed
## [1] 0.3476675
## 
## $expected
## [1] -0.00020004
## 
## $sd
## [1] 0.001710253
## 
## $p.value
## [1] 0

Índice de Moran - CE a 150cm [de la muestra 10001 a la 18526]

library(ape)
Longitud <- BD_MORAN_1_$X_WGS84[10001:18526]
Latitud <- BD_MORAN_1_$Y_WGS84[10001:18526]
Ce_dist <- as.matrix(dist(cbind(Longitud, Latitud)))
dim(Ce_dist)
## [1] 8526 8526
Ce_dist_inv <- 1/Ce_dist
Ce_dist_inv[is.infinite(Ce_dist_inv)] <- 0
diag(Ce_dist_inv) <- 0
CEa_150_1 <- BD_MORAN_1_$CEa_150[10001:18526]
Ce_dist_inv[1:10,1:10]
##           1         2         3         4         5         6         7
## 1      0.00  96784.06  60123.33  49109.46  38403.86  32791.83  27656.57
## 2  96784.06      0.00 158725.16  99696.88  63666.71  49595.41  38721.36
## 3  60123.33 158725.16      0.00 268081.10 106308.11  72134.49  51215.40
## 4  49109.46  99696.88 268081.10      0.00 176167.77  98689.57  63310.51
## 5  38403.86  63666.71 106308.11 176167.77      0.00 224397.51  98826.34
## 6  32791.83  49595.41  72134.49  98689.57 224397.51      0.00 176604.04
## 7  27656.57  38721.36  51215.40  63310.51  98826.34 176604.04      0.00
## 8  24230.57  32322.75  40588.04  47829.52  65654.77  92809.07 195601.85
## 9  21273.47  27266.74  32922.26  37531.37  47691.77  60563.48  92172.36
## 10 17129.70  20813.31  23954.27  26304.66  30921.66  35863.50  45001.75
##            8         9       10
## 1   24230.57  21273.47 17129.70
## 2   32322.75  27266.74 20813.31
## 3   40588.04  32922.26 23954.27
## 4   47829.52  37531.37 26304.66
## 5   65654.77  47691.77 30921.66
## 6   92809.07  60563.48 35863.50
## 7  195601.85  92172.36 45001.75
## 8       0.00 174312.08 58448.07
## 9  174312.08      0.00 87930.51
## 10  58448.07  87930.51     0.00
Moran.I(CEa_150_1,Ce_dist_inv)
## $observed
## [1] 0.4248239
## 
## $expected
## [1] -0.0001173021
## 
## $sd
## [1] 0.001024294
## 
## $p.value
## [1] 0