Nicolle Salamanca

Integrales

\[\int_{0}^{2e} ln(x)dx = \lim_{b \to 0}\int_{b}^{2e} ln(x)dx\]

curve(log(x),to=5,col="green",main="Áreas de la función ln(x) ")
abline(v=0, col= "gray")
abline(h=0, col= "gray")
abline(v=1, col="blue")
text(2.5,0.5,"Area 1",cex = 0.7)
text(0.38,-0.2,"Area 2",cex = 0.7)

log(exp(1))
[1] 1
puntos1 = 100000
d = c(); dn = c(); x = c(); y = c()
for(p in 1:puntos1){
  x[p] = runif(1, 1,2*exp(1))
  y[p] = runif(1, 0,log(2*exp(1)))
  d[p] = (y[p]<log(x[p]))
  dn[p] = ifelse(d[p] == T, 'Abajo', 'Arriba')
}

plot(x, y, col = ifelse(dn == 'Abajo', 'gray', 'darkblue'), pch = 19, cex = 0.25, main="ln(x) Cuadrante I")

puntos1 = table(dn)
(prop = puntos1[1]/sum(puntos1)) 
  Abajo 
0.63477 
names(prop) = 'Area'
(area_total =2*exp(1))
[1] 5.436564
area1<-(area.simulada = area_total*prop);area1
    Area 
3.450968 
puntos2 = 100000
d = c(); dn = c(); x = c(); y = c()
for(p in 1:puntos2){
  x[p] = runif(1, 0,1)
  y[p] = runif(1, -10,0)
  d[p]= (y[p]<log(x[p]))
  dn[p] = ifelse(d[p] == T, 'Arriba', 'Abajo')
}
plot(x, y, col = ifelse(dn == 'Arriba', 'gray', 'darkblue'), pch = 19, cex = 0.25,main="ln(x) Cuadrante IV")

puntos2 = table(dn)
(prop = puntos2[1]/sum(puntos2))
  Abajo 
0.10018 
names(prop) = 'Area'
(area_total = 2*exp(1))
[1] 5.436564
area2<-(area.simulada = area_total*prop);area2
     Area 
0.5446349 
areatotal<-area1+area2
areatotal
    Area 
3.995602 
LS0tDQp0aXRsZTogIkFzaWduYWNpw7NuIGludGVncmFsZXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KTmljb2xsZSBTYWxhbWFuY2EgDQoNCkludGVncmFsZXMNCg0KJCRcaW50X3swfV57MmV9IGxuKHgpZHggPSBcbGltX3tiIFx0byAwfVxpbnRfe2J9XnsyZX0gbG4oeClkeCQkDQoNCmBgYHtyfQ0KY3VydmUobG9nKHgpLHRvPTUsY29sPSJncmVlbiIsbWFpbj0iw4FyZWFzIGRlIGxhIGZ1bmNpw7NuIGxuKHgpICIpDQphYmxpbmUodj0wLCBjb2w9ICJncmF5IikNCmFibGluZShoPTAsIGNvbD0gImdyYXkiKQ0KYWJsaW5lKHY9MSwgY29sPSJibHVlIikNCnRleHQoMi41LDAuNSwiQXJlYSAxIixjZXggPSAwLjcpDQp0ZXh0KDAuMzgsLTAuMiwiQXJlYSAyIixjZXggPSAwLjcpDQpgYGANCmBgYHtyfQ0KbG9nKGV4cCgxKSkNCmBgYA0KYGBge3J9DQpwdW50b3MxID0gMTAwMDAwDQpkID0gYygpOyBkbiA9IGMoKTsgeCA9IGMoKTsgeSA9IGMoKQ0KZm9yKHAgaW4gMTpwdW50b3MxKXsNCiAgeFtwXSA9IHJ1bmlmKDEsIDEsMipleHAoMSkpDQogIHlbcF0gPSBydW5pZigxLCAwLGxvZygyKmV4cCgxKSkpDQogIGRbcF0gPSAoeVtwXTxsb2coeFtwXSkpDQogIGRuW3BdID0gaWZlbHNlKGRbcF0gPT0gVCwgJ0FiYWpvJywgJ0FycmliYScpDQp9DQoNCnBsb3QoeCwgeSwgY29sID0gaWZlbHNlKGRuID09ICdBYmFqbycsICdncmF5JywgJ2RhcmtibHVlJyksIHBjaCA9IDE5LCBjZXggPSAwLjI1LCBtYWluPSJsbih4KSBDdWFkcmFudGUgSSIpDQpgYGANCmBgYHtyfQ0KcHVudG9zMSA9IHRhYmxlKGRuKQ0KKHByb3AgPSBwdW50b3MxWzFdL3N1bShwdW50b3MxKSkgDQpgYGANCmBgYHtyfQ0KbmFtZXMocHJvcCkgPSAnQXJlYScNCihhcmVhX3RvdGFsID0yKmV4cCgxKSkNCmBgYA0KYGBge3J9DQphcmVhMTwtKGFyZWEuc2ltdWxhZGEgPSBhcmVhX3RvdGFsKnByb3ApO2FyZWExDQpgYGANCmBgYHtyfQ0KcHVudG9zMiA9IDEwMDAwMA0KZCA9IGMoKTsgZG4gPSBjKCk7IHggPSBjKCk7IHkgPSBjKCkNCmZvcihwIGluIDE6cHVudG9zMil7DQogIHhbcF0gPSBydW5pZigxLCAwLDEpDQogIHlbcF0gPSBydW5pZigxLCAtMTAsMCkNCiAgZFtwXT0gKHlbcF08bG9nKHhbcF0pKQ0KICBkbltwXSA9IGlmZWxzZShkW3BdID09IFQsICdBcnJpYmEnLCAnQWJham8nKQ0KfQ0KcGxvdCh4LCB5LCBjb2wgPSBpZmVsc2UoZG4gPT0gJ0FycmliYScsICdncmF5JywgJ2RhcmtibHVlJyksIHBjaCA9IDE5LCBjZXggPSAwLjI1LG1haW49ImxuKHgpIEN1YWRyYW50ZSBJViIpDQpgYGANCmBgYHtyfQ0KcHVudG9zMiA9IHRhYmxlKGRuKQ0KKHByb3AgPSBwdW50b3MyWzFdL3N1bShwdW50b3MyKSkNCg0KbmFtZXMocHJvcCkgPSAnQXJlYScNCihhcmVhX3RvdGFsID0gMipleHAoMSkpDQphcmVhMjwtKGFyZWEuc2ltdWxhZGEgPSBhcmVhX3RvdGFsKnByb3ApO2FyZWEyDQoNCmFyZWF0b3RhbDwtYXJlYTErYXJlYTINCmFyZWF0b3RhbA0KYGBgDQoNCg0K