Analysis on the variation of household energy consumption over a 2-day period in February, 2007.
This project uses data from the UC Irvine Machine Learning Repository, a popular repository for machine learning datasets. In particular, we will be using the “Individual household electric power consumption Data Set” which is available here: Electric power consumption [20MB]
Description : Measurements of electric power consumption in one household with a one-minute sampling rate over a period of almost 4 years. Different electrical quantities and some sub-metering values are available. The following descriptions of the 9 variables in the dataset are taken from the UCI web site:
filename<-"exdata_data_household_power_consumption.zip"
if(!file.exists(filename)){
file<-"https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip"
download.file(file,filename,method="curl")
}
if(!file.exists("household_power_consumption")){
unzip(filename)
}
data<-read.csv("household_power_consumption.txt",sep = ";",stringsAsFactors = FALSE) #reading the csv file and marking no string as factors
a<- data[data$Date %in% c("1/2/2007","2/2/2007") ,] #subsetting data to 2 particular dates
hist(as.numeric(a$Global_active_power), #coercing character to numeric and plotting a histogram
col="salmon", #setting color of histogram
main="Global Active Power", #setting main title of histogram
xlab="Global Active Power (kilowatts)") #setting x-lable of histogram
filename<-"exdata_data_household_power_consumption.zip"
if(!file.exists(filename)){
file<-"https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip"
download.file(file,filename,method="curl")
}
if(!file.exists("household_power_consumption")){
unzip(filename)
}
data<-read.csv("household_power_consumption.txt",sep = ";",stringsAsFactors = FALSE) #reading the csv file and marking no string as factors
subSetData <- data[data$Date %in% c("1/2/2007","2/2/2007") ,] #subsetting data to 2 particular dates
datetime <- strptime(paste(subSetData$Date, subSetData$Time, sep=" "), "%d/%m/%Y %H:%M:%S") #pasting date and time together and coercing from character to POSIXlt
globalActivePower <- as.numeric(subSetData$Global_active_power) #coercing the column of subsetted data from character to numeric
plot(datetime, globalActivePower, type="l", xlab="", ylab="Global Active Power (kilowatts)")
filename<-"exdata_data_household_power_consumption.zip"
if(!file.exists(filename)){
file<-"https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip"
download.file(file,filename,method="curl")
}
if(!file.exists("household_power_consumption")){
unzip(filename)
}
data<-read.csv("household_power_consumption.txt",sep = ";",stringsAsFactors = FALSE) ##reading the csv file and marking no string as factors
subSetData <- data[data$Date %in% c("1/2/2007","2/2/2007") ,] #subsetting data to required 2 dates
#str(subSetData)
datetime <- strptime(paste(subSetData$Date, subSetData$Time, sep=" "), "%d/%m/%Y %H:%M:%S")
globalActivePower <- as.numeric(subSetData$Global_active_power)
subMetering1 <- as.numeric(subSetData$Sub_metering_1)
subMetering2 <- as.numeric(subSetData$Sub_metering_2)
subMetering3 <- as.numeric(subSetData$Sub_metering_3)
plot(datetime, subMetering1, type="l", ylab="Energy Submetering", xlab="")
lines(datetime, subMetering2, type="l", col="red")
lines(datetime, subMetering3, type="l", col="blue")
legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty=1, lwd=2.5, col=c("black", "red", "blue"))
filename<-"exdata_data_household_power_consumption.zip"
if(!file.exists(filename)){
file<-"https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip"
download.file(file,filename,method="curl")
}
if(!file.exists("household_power_consumption")){
unzip(filename)
}
data<-read.csv("household_power_consumption.txt",sep = ";",stringsAsFactors = FALSE)
subSetData <- data[data$Date %in% c("1/2/2007","2/2/2007") ,] #subsetting data to 2 particular dates
datetime <- strptime(paste(subSetData$Date, subSetData$Time, sep=" "), "%d/%m/%Y %H:%M:%S") #pasting date and time together and coercing from character to POSIXlt
globalActivePower <- as.numeric(subSetData$Global_active_power)
globalReactivePower <- as.numeric(subSetData$Global_reactive_power)
voltage <- as.numeric(subSetData$Voltage)
subMetering1 <- as.numeric(subSetData$Sub_metering_1)
subMetering2 <- as.numeric(subSetData$Sub_metering_2)
subMetering3 <- as.numeric(subSetData$Sub_metering_3)
par(mfrow = c(2, 2))
plot(datetime, globalActivePower, type="l", xlab="", ylab="Global Active Power", cex=0.2)
plot(datetime, voltage, type="l", xlab="datetime", ylab="Voltage")
plot(datetime, subMetering1, type="l", ylab="Energy Submetering", xlab="")
lines(datetime, subMetering2, type="l", col="red")
lines(datetime, subMetering3, type="l", col="blue")
legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty=, lwd=2.5, col=c("black", "red", "blue"), bty="o")
plot(datetime, globalReactivePower, type="l", xlab="datetime", ylab="Global_reactive_power")