Background

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) tool is a risk and needs assessment instrument created by Northpointe, Inc. used, in part, to assess risk of recidivsim. The validity of COMPAS in the management of criminal offenders has been questioned by many groups, including the journalists at ProPublica. The following analyses are presented to determine if there is potential biases in COMPAS scores related to an offenders sex (male, female). To ensure equitable application within the justice system, it is paramount that scores such as COMPAS do not insert unwarranted disparities to specific subpopulations.

In Broward County, Florida COMPAS scores are assigned at the time of booking into jail. These scores include predictions for “Risk of Recidivism” and “Risk of Violent Recidivism”. These scores are compared with actual occurrances of recidivism, specifically recidivism of violent nature. Applying Northpointe’s COMPAS tool, defendents are given a score of 1-10 in each construct. Scores 1 to 4 are considerd “low risk”, 5 to 7 “medium risk”, and 8 to 10 “high risk”.

A dataset containing COMPAS scores, public criminal records, and demographic information including race and sex was compiled by ProPublica and is [publicly available] (https://raw.githubusercontent.com/propublica/compas-analysis/master/cox-violent-parsed.csv)

data <- read.csv(url('https://raw.githubusercontent.com/propublica/compas-analysis/master/cox-violent-parsed.csv'))
dim(data)
## [1] 18316    52
names(data)
##  [1] "id"                      "name"                   
##  [3] "first"                   "last"                   
##  [5] "compas_screening_date"   "sex"                    
##  [7] "dob"                     "age"                    
##  [9] "age_cat"                 "race"                   
## [11] "juv_fel_count"           "decile_score"           
## [13] "juv_misd_count"          "juv_other_count"        
## [15] "priors_count"            "days_b_screening_arrest"
## [17] "c_jail_in"               "c_jail_out"             
## [19] "c_case_number"           "c_offense_date"         
## [21] "c_arrest_date"           "c_days_from_compas"     
## [23] "c_charge_degree"         "c_charge_desc"          
## [25] "is_recid"                "r_case_number"          
## [27] "r_charge_degree"         "r_days_from_arrest"     
## [29] "r_offense_date"          "r_charge_desc"          
## [31] "r_jail_in"               "r_jail_out"             
## [33] "violent_recid"           "is_violent_recid"       
## [35] "vr_case_number"          "vr_charge_degree"       
## [37] "vr_offense_date"         "vr_charge_desc"         
## [39] "type_of_assessment"      "decile_score.1"         
## [41] "score_text"              "screening_date"         
## [43] "v_type_of_assessment"    "v_decile_score"         
## [45] "v_score_text"            "v_screening_date"       
## [47] "in_custody"              "out_custody"            
## [49] "priors_count.1"          "start"                  
## [51] "end"                     "event"

Data Preparation

#Reduce to Variable of Interest for Convenience
datred<-data[c(1,6,8,9,10,16,25,33,34,40,41,44,45,46,49,50,51,52)]
summary(datred)
##        id            sex             age                   age_cat     
##  Min.   :    1   Female: 3383   Min.   :18.00   25 - 45        :10372  
##  1st Qu.: 2772   Male  :14933   1st Qu.:25.00   Greater than 45: 3661  
##  Median : 5489                  Median :31.00   Less than 25   : 4283  
##  Mean   : 5493                  Mean   :34.02                          
##  3rd Qu.: 8205                  3rd Qu.:41.00                          
##  Max.   :11001                  Max.   :96.00                          
##                                                                        
##                race      days_b_screening_arrest    is_recid      
##  African-American:9791   Min.   :-597.000        Min.   :-1.0000  
##  Asian           :  71   1st Qu.:  -1.000        1st Qu.: 0.0000  
##  Caucasian       :6086   Median :  -1.000        Median : 0.0000  
##  Hispanic        :1451   Mean   :   4.303        Mean   : 0.4148  
##  Native American :  57   3rd Qu.:   0.000        3rd Qu.: 1.0000  
##  Other           : 860   Max.   :1057.000        Max.   : 1.0000  
##                          NA's   :1297                             
##  violent_recid  is_violent_recid  decile_score.1    score_text  
##  Mode:logical   Min.   :0.00000   Min.   :-1.000   High  :4614  
##  NA's:18316     1st Qu.:0.00000   1st Qu.: 2.000   Low   :8597  
##                 Median :0.00000   Median : 5.000   Medium:5082  
##                 Mean   :0.07311   Mean   : 4.997   N/A   :  23  
##                 3rd Qu.:0.00000   3rd Qu.: 8.000                
##                 Max.   :1.00000   Max.   :10.000                
##                                                                 
##  v_decile_score   v_score_text     v_screening_date priors_count.1  
##  Min.   :-1.000   High  : 2377   2013-03-20:   72   Min.   : 0.000  
##  1st Qu.: 2.000   Low   :11147   2013-02-07:   68   1st Qu.: 0.000  
##  Median : 4.000   Medium: 4786   2013-04-20:   68   Median : 2.000  
##  Mean   : 4.023   N/A   :    6   2014-11-12:   67   Mean   : 3.913  
##  3rd Qu.: 6.000                  2013-02-14:   65   3rd Qu.: 5.000  
##  Max.   :10.000                  2013-01-12:   64   Max.   :43.000  
##                                  (Other)   :17912                   
##      start             end             event        
##  Min.   :   0.0   Min.   :   0.0   Min.   :0.00000  
##  1st Qu.:   0.0   1st Qu.: 364.0   1st Qu.:0.00000  
##  Median :   7.0   Median : 634.0   Median :0.00000  
##  Mean   : 186.4   Mean   : 625.2   Mean   :0.04471  
##  3rd Qu.: 309.0   3rd Qu.: 897.0   3rd Qu.:0.00000  
##  Max.   :1197.0   Max.   :1187.0   Max.   :1.00000  
## 
# End time later than start time clean-up
dat2 <- datred[datred$end > datred$start,]
dim(dat2)
## [1] 18200    18
# Use only first entry for each offender
dat <- dat2[!duplicated(dat2$id),]
dim(dat)
## [1] 10999    18
# Set Factors
dat$id<-as.factor(dat$id)
dat$is_recid<-as.factor(dat$is_recid)
dat$event<-as.factor(dat$event)
dat$is_violent_recid<-as.factor(dat$is_violent_recid)

# Verify levels of variables to remove erroneous datapoints
#levels(dat$decile_score.1)
#levels(dat$v_decile_score)
#levels(dat$priors_count.1)
datfin <- subset(dat,dat$decile_score.1 != "-1" & dat$v_decile_score != "-1" & dat$is_recid != "-1" & dat$days_b_screening_arrest >=-30 & dat$days_b_screening_arrest <=30)

#order categorical variables
datfin$age_cat <- ordered(datfin$age_cat, levels = c("Less than 25","25 - 45","Greater than 45"))
datfin$score_text <- ordered(datfin$score_text, levels = c("Low","Medium","High"))
datfin$v_score_text <- ordered(datfin$v_score_text, levels = c("Low","Medium","High"))

## Add Risk Time
datfin$t_atrisk<-datfin$end-datfin$start

## Add Sex Race Variable
library(plyr)
datfin$consolrace<-revalue(datfin$race, c("Asian"="Other", "Native American"="Other"))
datfin$sexrace<-paste(datfin$sex,datfin$consolrace)
summary(datfin)
##        id           sex            age                   age_cat    
##  1      :   1   Female:1794   Min.   :18.00   Less than 25   :1884  
##  3      :   1   Male  :6985   1st Qu.:25.00   25 - 45        :5023  
##  4      :   1                 Median :31.00   Greater than 45:1872  
##  7      :   1                 Mean   :34.72                         
##  8      :   1                 3rd Qu.:42.00                         
##  9      :   1                 Max.   :96.00                         
##  (Other):8773                                                       
##                race      days_b_screening_arrest is_recid  violent_recid 
##  African-American:4382   Min.   :-30.00          -1:   0   Mode:logical  
##  Asian           :  46   1st Qu.: -1.00          0 :5790   NA's:8779     
##  Caucasian       :3041   Median : -1.00          1 :2989                 
##  Hispanic        : 761   Mean   : -1.79                                  
##  Native American :  23   3rd Qu.: -1.00                                  
##  Other           : 526   Max.   : 30.00                                  
##                                                                          
##  is_violent_recid decile_score.1    score_text   v_decile_score  v_score_text 
##  0:8088           Min.   : 1.000   Low   :5028   Min.   : 1.00   Low   :5997  
##  1: 691           1st Qu.: 2.000   Medium:2187   1st Qu.: 1.00   Medium:1968  
##                   Median : 4.000   High  :1564   Median : 3.00   High  : 814  
##                   Mean   : 4.305                 Mean   : 3.55                
##                   3rd Qu.: 7.000                 3rd Qu.: 5.00                
##                   Max.   :10.000                 Max.   :10.00                
##                                                                               
##    v_screening_date priors_count.1       start              end        
##  2013-04-20:  31    Min.   : 0.000   Min.   :   0.00   Min.   :   1.0  
##  2013-02-07:  29    1st Qu.: 0.000   1st Qu.:   0.00   1st Qu.: 257.0  
##  2013-03-20:  29    Median : 1.000   Median :   0.00   Median : 597.0  
##  2014-11-12:  27    Mean   : 3.019   Mean   :  28.95   Mean   : 582.2  
##  2013-02-14:  26    3rd Qu.: 4.000   3rd Qu.:   3.00   3rd Qu.: 863.0  
##  2013-02-22:  26    Max.   :38.000   Max.   :1185.00   Max.   :1186.0  
##  (Other)   :8611                                                       
##  event       t_atrisk                 consolrace     sexrace         
##  0:8343   Min.   :   1.0   African-American:4382   Length:8779       
##  1: 436   1st Qu.: 211.0   Other           : 595   Class :character  
##           Median : 564.0   Caucasian       :3041   Mode  :character  
##           Mean   : 553.2   Hispanic        : 761                     
##           3rd Qu.: 836.0                                             
##           Max.   :1185.0                                             
## 
dim(datfin)
## [1] 8779   21
head(datfin)
##    id  sex age         age_cat             race days_b_screening_arrest
## 1   1 Male  69 Greater than 45            Other                      -1
## 4   3 Male  34         25 - 45 African-American                      -1
## 5   4 Male  24    Less than 25 African-American                      -1
## 12  7 Male  44         25 - 45            Other                       0
## 13  8 Male  41         25 - 45        Caucasian                      -1
## 15  9 Male  43         25 - 45            Other                      -1
##    is_recid violent_recid is_violent_recid decile_score.1 score_text
## 1         0            NA                0              1        Low
## 4         1            NA                1              3        Low
## 5         1            NA                0              4        Low
## 12        0            NA                0              1        Low
## 13        1            NA                0              6     Medium
## 15        0            NA                0              4        Low
##    v_decile_score v_score_text v_screening_date priors_count.1 start end event
## 1               1          Low       2013-08-14              0     0 327     0
## 4               1          Low       2013-01-27              0     9 159     1
## 5               3          Low       2013-04-14              4     0  63     0
## 12              1          Low       2013-11-30              0     1 853     0
## 13              2          Low       2014-02-19             14     5  40     0
## 15              3          Low       2013-08-30              3     0 265     0
##    t_atrisk       consolrace               sexrace
## 1       327            Other            Male Other
## 4       150 African-American Male African-American
## 5        63 African-American Male African-American
## 12      852            Other            Male Other
## 13       35        Caucasian        Male Caucasian
## 15      265            Other            Male Other

Exporatory Data Analysis

Trends in the data: * The majority of offenders in the dataset are male +20.44% Female + 79.56% Male

Sex

table(datfin$sex)
## 
## Female   Male 
##   1794   6985
table(datfin$sex)/sum(!is.na(datfin$sex))*100
## 
##   Female     Male 
## 20.43513 79.56487

Age by Sex

library(ggplot2)
ggplot(datfin, aes(x=age_cat, group=sex)) +
geom_bar(aes(y=..prop..,fill=factor(..x..)), stat="count") + geom_text(aes( label = scales::percent(..prop..), y= ..prop.. ), stat= "count", vjust = -.5) + labs(y = "Percent", x="Age", fill="Age") + facet_grid(~sex) + scale_y_continuous(labels=scales::percent)

Race by Sex

ggplot(datfin, aes(race)) +
  geom_bar(fill='blue')

raceplot<-ggplot(datfin, aes(x=race, group=sex)) +
geom_bar(aes(y=..prop..,fill=factor(..x..)), stat="count") + geom_text(size=3, aes( label = scales::percent(..prop..), y= ..prop.. ), stat= "count", vjust = -.5) + labs(y = "Percent", x="Race", fill="Race") + facet_grid(~sex) + scale_y_continuous(labels=scales::percent)
raceplot + theme(axis.text.x = element_text(angle=45, vjust = 1, hjust = 1))

General COMPAS Decile Score and Overall Recidivism Frequency by Sex

ggplot(datfin, aes(score_text)) +
  geom_bar(fill='blue')

ggplot(datfin, aes(x=score_text, group=sex)) +
geom_bar(aes(y=..prop..,fill=factor(..x..)), stat="count") + geom_text(size=3, aes( label = scales::percent(..prop..), y= ..prop.. ), stat= "count", vjust = -0.7, hjust=0.4) + labs(y = "Percent", x="Decile category", fill="Decile") + facet_grid(~sex) + scale_y_continuous(labels=scales::percent)

ggplot(datfin, aes(is_recid)) +
  geom_bar(fill='blue')

ggplot(datfin, aes(x=is_recid, group=sex)) +
geom_bar(aes(y=..prop..,fill=factor(..x..)), stat="count") + geom_text(size=3, aes( label = scales::percent(..prop..), y= ..prop.. ), stat= "count", vjust = -0.7, hjust=0.4) + labs(y = "Percent", x="Recidivism", fill="Recidivism") + facet_grid(~sex) + scale_y_continuous(labels=scales::percent)

Violent COMPAS Decile Score and Violent Recidivism Frequency by Sex

ggplot(datfin, aes(v_score_text)) +
  geom_bar(fill='blue')

ggplot(datfin, aes(x=v_score_text, group=sex)) +
geom_bar(aes(y=..prop..,fill=factor(..x..)), stat="count") + geom_text(size=3, aes( label = scales::percent(..prop..), y= ..prop.. ), stat= "count", vjust = -0.7, hjust=0.4) + labs(y = "Percent", x="Violent Decile category", fill="V Decile") + facet_grid(~sex) + scale_y_continuous(labels=scales::percent)

ggplot(datfin, aes(is_violent_recid)) +
  geom_bar(fill='blue')

ggplot(datfin, aes(x=is_violent_recid, group=sex)) +
geom_bar(aes(y=..prop..,fill=factor(..x..)), stat="count") + geom_text(size=3, aes( label = scales::percent(..prop..), y= ..prop.. ), stat= "count", vjust = -0.7, hjust=0.4) + labs(y = "Percent", x="Violent Recidivism", fill="V Recid") + facet_grid(~sex) + scale_y_continuous(labels=scales::percent)

Survival Analysis

library(survival)
library(ggfortify)

survobj <- with(datfin, Surv(t_atrisk, is_violent_recid==1))
fit0 <- survfit(survobj~1, data=datfin)
summary(fit0)
## Call: survfit(formula = survobj ~ 1, data = datfin)
## 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     1   8779       3    1.000 0.000197        0.999        1.000
##     2   8670       3    0.999 0.000281        0.999        1.000
##     3   8660       3    0.999 0.000344        0.998        1.000
##     4   8647       8    0.998 0.000474        0.997        0.999
##     5   8629       2    0.998 0.000502        0.997        0.999
##     6   8613       2    0.998 0.000528        0.997        0.999
##     7   8598       2    0.997 0.000552        0.996        0.998
##     8   8573       2    0.997 0.000576        0.996        0.998
##     9   8551       3    0.997 0.000610        0.996        0.998
##    10   8535       4    0.996 0.000653        0.995        0.998
##    11   8525       1    0.996 0.000664        0.995        0.997
##    12   8513       2    0.996 0.000684        0.995        0.997
##    13   8505       5    0.995 0.000732        0.994        0.997
##    14   8486       4    0.995 0.000768        0.993        0.996
##    15   8475       3    0.995 0.000794        0.993        0.996
##    16   8459       5    0.994 0.000836        0.992        0.996
##    17   8444       1    0.994 0.000844        0.992        0.995
##    18   8429       2    0.994 0.000861        0.992        0.995
##    19   8412       2    0.993 0.000876        0.992        0.995
##    20   8394       5    0.993 0.000915        0.991        0.995
##    21   8377       3    0.992 0.000937        0.991        0.994
##    22   8361       5    0.992 0.000974        0.990        0.994
##    23   8344       2    0.992 0.000988        0.990        0.994
##    24   8334       4    0.991 0.001016        0.989        0.993
##    25   8318       6    0.990 0.001056        0.988        0.992
##    26   8303       1    0.990 0.001063        0.988        0.992
##    27   8292       6    0.990 0.001101        0.987        0.992
##    28   8281       3    0.989 0.001120        0.987        0.991
##    29   8266       2    0.989 0.001133        0.987        0.991
##    30   8248       6    0.988 0.001169        0.986        0.991
##    31   8228       4    0.988 0.001193        0.985        0.990
##    32   8217       2    0.988 0.001205        0.985        0.990
##    33   8207       5    0.987 0.001234        0.985        0.989
##    34   8191       2    0.987 0.001245        0.984        0.989
##    35   8172       1    0.987 0.001251        0.984        0.989
##    36   8158       1    0.986 0.001257        0.984        0.989
##    37   8147       4    0.986 0.001279        0.983        0.988
##    38   8133       1    0.986 0.001285        0.983        0.988
##    39   8115       1    0.986 0.001290        0.983        0.988
##    40   8102       2    0.985 0.001301        0.983        0.988
##    41   8091       4    0.985 0.001323        0.982        0.988
##    42   8081       2    0.985 0.001334        0.982        0.987
##    43   8071       1    0.985 0.001340        0.982        0.987
##    44   8061       2    0.984 0.001350        0.982        0.987
##    45   8052       1    0.984 0.001356        0.982        0.987
##    47   8031       4    0.984 0.001377        0.981        0.986
##    48   8019       3    0.983 0.001393        0.981        0.986
##    49   8003       3    0.983 0.001408        0.980        0.986
##    50   7989       4    0.983 0.001429        0.980        0.985
##    51   7974       5    0.982 0.001454        0.979        0.985
##    52   7953       3    0.982 0.001470        0.979        0.984
##    53   7938       1    0.981 0.001475        0.979        0.984
##    54   7923       1    0.981 0.001480        0.978        0.984
##    55   7916       4    0.981 0.001499        0.978        0.984
##    57   7886       2    0.981 0.001509        0.978        0.984
##    58   7876       3    0.980 0.001524        0.977        0.983
##    59   7864       2    0.980 0.001534        0.977        0.983
##    60   7855       3    0.980 0.001548        0.977        0.983
##    61   7839       1    0.979 0.001553        0.976        0.982
##    62   7827       2    0.979 0.001563        0.976        0.982
##    63   7811       2    0.979 0.001573        0.976        0.982
##    64   7804       1    0.979 0.001577        0.976        0.982
##    65   7791       2    0.979 0.001587        0.975        0.982
##    66   7782       6    0.978 0.001615        0.975        0.981
##    67   7766       3    0.977 0.001629        0.974        0.981
##    68   7752       2    0.977 0.001639        0.974        0.980
##    69   7740       2    0.977 0.001648        0.974        0.980
##    70   7723       2    0.977 0.001657        0.973        0.980
##    72   7701       2    0.976 0.001666        0.973        0.980
##    73   7691       3    0.976 0.001680        0.973        0.979
##    74   7682       3    0.976 0.001694        0.972        0.979
##    75   7673       1    0.976 0.001698        0.972        0.979
##    76   7662       3    0.975 0.001712        0.972        0.978
##    78   7636       3    0.975 0.001726        0.971        0.978
##    79   7629       4    0.974 0.001744        0.971        0.978
##    80   7619       3    0.974 0.001757        0.970        0.977
##    83   7591       1    0.974 0.001761        0.970        0.977
##    84   7581       2    0.973 0.001770        0.970        0.977
##    85   7569       3    0.973 0.001783        0.970        0.977
##    86   7559       4    0.973 0.001801        0.969        0.976
##    87   7547       1    0.972 0.001805        0.969        0.976
##    88   7536       2    0.972 0.001814        0.969        0.976
##    89   7531       3    0.972 0.001827        0.968        0.975
##    90   7514       3    0.971 0.001840        0.968        0.975
##    91   7507       4    0.971 0.001857        0.967        0.975
##    92   7497       1    0.971 0.001861        0.967        0.974
##    93   7488       1    0.971 0.001866        0.967        0.974
##    94   7475       5    0.970 0.001887        0.966        0.974
##    95   7464       3    0.970 0.001899        0.966        0.973
##    96   7455       2    0.969 0.001908        0.966        0.973
##    98   7437       1    0.969 0.001912        0.965        0.973
##    99   7424       3    0.969 0.001925        0.965        0.973
##   100   7410       2    0.969 0.001933        0.965        0.972
##   101   7402       1    0.968 0.001937        0.965        0.972
##   102   7395       4    0.968 0.001954        0.964        0.972
##   104   7377       5    0.967 0.001974        0.963        0.971
##   106   7356       4    0.967 0.001991        0.963        0.971
##   107   7340       3    0.966 0.002003        0.962        0.970
##   108   7331       1    0.966 0.002007        0.962        0.970
##   110   7308       3    0.966 0.002019        0.962        0.970
##   115   7270       2    0.966 0.002027        0.962        0.970
##   117   7253       3    0.965 0.002040        0.961        0.969
##   119   7235       2    0.965 0.002048        0.961        0.969
##   120   7227       4    0.964 0.002064        0.960        0.968
##   121   7217       2    0.964 0.002072        0.960        0.968
##   123   7199       2    0.964 0.002080        0.960        0.968
##   126   7180       1    0.964 0.002084        0.960        0.968
##   127   7169       1    0.964 0.002088        0.959        0.968
##   129   7157       1    0.963 0.002092        0.959        0.967
##   130   7147       2    0.963 0.002100        0.959        0.967
##   131   7134       1    0.963 0.002104        0.959        0.967
##   132   7130       3    0.963 0.002116        0.958        0.967
##   134   7117       2    0.962 0.002124        0.958        0.966
##   136   7097       3    0.962 0.002136        0.958        0.966
##   137   7087       3    0.961 0.002148        0.957        0.966
##   139   7062       1    0.961 0.002152        0.957        0.966
##   140   7056       2    0.961 0.002160        0.957        0.965
##   142   7045       1    0.961 0.002164        0.957        0.965
##   144   7034       3    0.961 0.002176        0.956        0.965
##   145   7026       3    0.960 0.002188        0.956        0.964
##   146   7019       4    0.960 0.002204        0.955        0.964
##   147   7006       2    0.959 0.002212        0.955        0.964
##   148   6993       3    0.959 0.002224        0.955        0.963
##   149   6985       2    0.959 0.002231        0.954        0.963
##   150   6975       4    0.958 0.002247        0.954        0.962
##   151   6961       2    0.958 0.002255        0.953        0.962
##   152   6953       2    0.958 0.002263        0.953        0.962
##   153   6946       1    0.957 0.002266        0.953        0.962
##   154   6937       1    0.957 0.002270        0.953        0.962
##   156   6929       1    0.957 0.002274        0.953        0.962
##   158   6918       1    0.957 0.002278        0.953        0.961
##   159   6911       1    0.957 0.002282        0.952        0.961
##   161   6895       1    0.957 0.002286        0.952        0.961
##   163   6880       1    0.957 0.002290        0.952        0.961
##   164   6877       1    0.956 0.002294        0.952        0.961
##   165   6870       1    0.956 0.002298        0.952        0.961
##   166   6865       3    0.956 0.002309        0.951        0.960
##   167   6857       2    0.956 0.002317        0.951        0.960
##   168   6851       2    0.955 0.002325        0.951        0.960
##   169   6845       4    0.955 0.002340        0.950        0.959
##   170   6832       3    0.954 0.002351        0.950        0.959
##   171   6820       2    0.954 0.002359        0.949        0.959
##   172   6814       5    0.953 0.002378        0.949        0.958
##   173   6802       2    0.953 0.002385        0.948        0.958
##   174   6793       1    0.953 0.002389        0.948        0.958
##   176   6778       1    0.953 0.002393        0.948        0.957
##   177   6771       2    0.952 0.002401        0.948        0.957
##   180   6753       1    0.952 0.002404        0.948        0.957
##   181   6748       1    0.952 0.002408        0.948        0.957
##   182   6739       2    0.952 0.002416        0.947        0.957
##   185   6720       1    0.952 0.002420        0.947        0.957
##   186   6713       1    0.952 0.002423        0.947        0.956
##   187   6710       1    0.952 0.002427        0.947        0.956
##   188   6707       1    0.951 0.002431        0.947        0.956
##   189   6701       2    0.951 0.002438        0.946        0.956
##   190   6689       1    0.951 0.002442        0.946        0.956
##   191   6686       1    0.951 0.002446        0.946        0.956
##   195   6673       2    0.951 0.002454        0.946        0.955
##   197   6662       2    0.950 0.002461        0.945        0.955
##   198   6655       1    0.950 0.002465        0.945        0.955
##   199   6649       1    0.950 0.002469        0.945        0.955
##   202   6641       1    0.950 0.002472        0.945        0.955
##   203   6638       1    0.950 0.002476        0.945        0.955
##   204   6631       1    0.950 0.002480        0.945        0.954
##   205   6622       1    0.949 0.002484        0.945        0.954
##   209   6603       2    0.949 0.002491        0.944        0.954
##   212   6579       3    0.949 0.002503        0.944        0.954
##   213   6574       1    0.948 0.002506        0.944        0.953
##   214   6569       1    0.948 0.002510        0.943        0.953
##   216   6554       1    0.948 0.002514        0.943        0.953
##   217   6548       1    0.948 0.002518        0.943        0.953
##   218   6542       2    0.948 0.002525        0.943        0.953
##   219   6531       1    0.948 0.002529        0.943        0.953
##   220   6524       1    0.947 0.002533        0.943        0.952
##   222   6519       2    0.947 0.002540        0.942        0.952
##   223   6512       1    0.947 0.002544        0.942        0.952
##   224   6508       2    0.947 0.002552        0.942        0.952
##   226   6498       1    0.947 0.002555        0.942        0.952
##   229   6487       2    0.946 0.002563        0.941        0.951
##   230   6479       2    0.946 0.002570        0.941        0.951
##   231   6474       1    0.946 0.002574        0.941        0.951
##   232   6469       1    0.946 0.002578        0.941        0.951
##   233   6458       1    0.946 0.002582        0.941        0.951
##   236   6439       2    0.945 0.002589        0.940        0.950
##   238   6425       1    0.945 0.002593        0.940        0.950
##   241   6409       4    0.945 0.002608        0.939        0.950
##   242   6401       3    0.944 0.002619        0.939        0.949
##   243   6395       2    0.944 0.002627        0.939        0.949
##   247   6374       1    0.944 0.002631        0.939        0.949
##   250   6357       3    0.943 0.002642        0.938        0.948
##   251   6350       1    0.943 0.002646        0.938        0.948
##   252   6346       2    0.943 0.002653        0.938        0.948
##   253   6340       1    0.943 0.002657        0.937        0.948
##   255   6325       1    0.942 0.002661        0.937        0.948
##   256   6320       2    0.942 0.002668        0.937        0.947
##   257   6314       1    0.942 0.002672        0.937        0.947
##   259   6302       3    0.942 0.002683        0.936        0.947
##   261   6294       1    0.941 0.002687        0.936        0.947
##   262   6291       1    0.941 0.002691        0.936        0.947
##   263   6288       3    0.941 0.002702        0.936        0.946
##   266   6277       2    0.941 0.002709        0.935        0.946
##   267   6273       1    0.940 0.002713        0.935        0.946
##   268   6267       1    0.940 0.002717        0.935        0.946
##   269   6265       1    0.940 0.002720        0.935        0.945
##   272   6250       1    0.940 0.002724        0.935        0.945
##   274   6240       1    0.940 0.002728        0.934        0.945
##   275   6238       1    0.940 0.002732        0.934        0.945
##   277   6229       1    0.939 0.002735        0.934        0.945
##   278   6223       1    0.939 0.002739        0.934        0.945
##   279   6218       2    0.939 0.002747        0.934        0.944
##   280   6213       1    0.939 0.002750        0.934        0.944
##   281   6209       1    0.939 0.002754        0.933        0.944
##   282   6206       1    0.939 0.002758        0.933        0.944
##   283   6203       1    0.938 0.002761        0.933        0.944
##   284   6199       1    0.938 0.002765        0.933        0.944
##   285   6198       1    0.938 0.002769        0.933        0.944
##   287   6189       1    0.938 0.002772        0.933        0.943
##   289   6178       1    0.938 0.002776        0.932        0.943
##   293   6161       1    0.938 0.002780        0.932        0.943
##   294   6154       1    0.938 0.002784        0.932        0.943
##   295   6151       1    0.937 0.002787        0.932        0.943
##   296   6148       2    0.937 0.002795        0.932        0.943
##   297   6143       1    0.937 0.002798        0.931        0.942
##   303   6118       1    0.937 0.002802        0.931        0.942
##   305   6113       1    0.937 0.002806        0.931        0.942
##   308   6103       1    0.936 0.002810        0.931        0.942
##   309   6098       1    0.936 0.002813        0.931        0.942
##   311   6093       1    0.936 0.002817        0.931        0.942
##   312   6089       2    0.936 0.002825        0.930        0.941
##   313   6083       1    0.936 0.002828        0.930        0.941
##   314   6079       1    0.936 0.002832        0.930        0.941
##   318   6059       2    0.935 0.002839        0.930        0.941
##   320   6052       2    0.935 0.002847        0.929        0.941
##   323   6039       1    0.935 0.002851        0.929        0.940
##   325   6030       1    0.935 0.002854        0.929        0.940
##   326   6025       3    0.934 0.002866        0.929        0.940
##   329   6010       1    0.934 0.002869        0.928        0.940
##   330   6004       3    0.934 0.002881        0.928        0.939
##   332   5998       1    0.933 0.002884        0.928        0.939
##   334   5991       1    0.933 0.002888        0.928        0.939
##   335   5988       1    0.933 0.002892        0.927        0.939
##   337   5974       1    0.933 0.002895        0.927        0.939
##   338   5968       1    0.933 0.002899        0.927        0.938
##   341   5955       2    0.932 0.002907        0.927        0.938
##   343   5948       1    0.932 0.002910        0.927        0.938
##   345   5944       1    0.932 0.002914        0.926        0.938
##   350   5928       2    0.932 0.002922        0.926        0.938
##   352   5920       1    0.932 0.002925        0.926        0.937
##   356   5902       1    0.931 0.002929        0.926        0.937
##   357   5896       3    0.931 0.002940        0.925        0.937
##   358   5891       1    0.931 0.002944        0.925        0.937
##   359   5887       1    0.931 0.002948        0.925        0.936
##   363   5872       1    0.931 0.002952        0.925        0.936
##   367   5854       1    0.930 0.002955        0.925        0.936
##   368   5849       2    0.930 0.002963        0.924        0.936
##   369   5840       1    0.930 0.002967        0.924        0.936
##   370   5837       1    0.930 0.002970        0.924        0.936
##   372   5826       1    0.930 0.002974        0.924        0.935
##   373   5822       1    0.929 0.002978        0.924        0.935
##   374   5817       2    0.929 0.002986        0.923        0.935
##   375   5814       1    0.929 0.002989        0.923        0.935
##   376   5812       1    0.929 0.002993        0.923        0.935
##   377   5808       1    0.929 0.002997        0.923        0.935
##   379   5801       1    0.928 0.003001        0.923        0.934
##   380   5797       2    0.928 0.003008        0.922        0.934
##   384   5783       1    0.928 0.003012        0.922        0.934
##   386   5775       1    0.928 0.003016        0.922        0.934
##   387   5770       3    0.927 0.003027        0.921        0.933
##   391   5751       1    0.927 0.003031        0.921        0.933
##   395   5735       1    0.927 0.003034        0.921        0.933
##   396   5733       1    0.927 0.003038        0.921        0.933
##   399   5715       1    0.927 0.003042        0.921        0.933
##   401   5713       1    0.927 0.003046        0.921        0.933
##   404   5703       1    0.926 0.003050        0.920        0.932
##   406   5696       1    0.926 0.003053        0.920        0.932
##   407   5690       1    0.926 0.003057        0.920        0.932
##   410   5681       1    0.926 0.003061        0.920        0.932
##   412   5676       1    0.926 0.003065        0.920        0.932
##   414   5673       3    0.925 0.003076        0.919        0.931
##   415   5665       1    0.925 0.003080        0.919        0.931
##   416   5657       1    0.925 0.003084        0.919        0.931
##   418   5651       1    0.925 0.003087        0.919        0.931
##   421   5646       1    0.925 0.003091        0.919        0.931
##   427   5621       1    0.924 0.003095        0.918        0.930
##   430   5607       1    0.924 0.003099        0.918        0.930
##   432   5598       1    0.924 0.003103        0.918        0.930
##   434   5593       1    0.924 0.003107        0.918        0.930
##   436   5581       3    0.923 0.003118        0.917        0.930
##   438   5573       1    0.923 0.003122        0.917        0.929
##   443   5554       1    0.923 0.003126        0.917        0.929
##   446   5542       1    0.923 0.003130        0.917        0.929
##   447   5538       1    0.923 0.003134        0.917        0.929
##   448   5533       1    0.923 0.003137        0.916        0.929
##   449   5529       1    0.922 0.003141        0.916        0.929
##   450   5525       1    0.922 0.003145        0.916        0.928
##   451   5521       1    0.922 0.003149        0.916        0.928
##   453   5513       1    0.922 0.003153        0.916        0.928
##   455   5506       2    0.922 0.003161        0.915        0.928
##   457   5495       1    0.921 0.003165        0.915        0.928
##   459   5483       1    0.921 0.003168        0.915        0.927
##   462   5445       1    0.921 0.003172        0.915        0.927
##   466   5403       1    0.921 0.003176        0.915        0.927
##   470   5357       1    0.921 0.003180        0.915        0.927
##   471   5346       1    0.921 0.003184        0.914        0.927
##   472   5332       1    0.920 0.003189        0.914        0.927
##   473   5316       1    0.920 0.003193        0.914        0.926
##   476   5293       1    0.920 0.003197        0.914        0.926
##   479   5260       1    0.920 0.003201        0.914        0.926
##   480   5245       1    0.920 0.003205        0.913        0.926
##   482   5222       1    0.920 0.003209        0.913        0.926
##   486   5185       1    0.919 0.003214        0.913        0.926
##   487   5181       1    0.919 0.003218        0.913        0.925
##   489   5172       1    0.919 0.003222        0.913        0.925
##   491   5154       1    0.919 0.003226        0.912        0.925
##   493   5128       2    0.918 0.003235        0.912        0.925
##   498   5072       1    0.918 0.003240        0.912        0.925
##   499   5059       1    0.918 0.003244        0.912        0.924
##   503   5012       1    0.918 0.003249        0.912        0.924
##   506   4980       1    0.918 0.003253        0.911        0.924
##   507   4963       1    0.918 0.003258        0.911        0.924
##   508   4951       1    0.917 0.003262        0.911        0.924
##   511   4925       1    0.917 0.003267        0.911        0.924
##   521   4815       1    0.917 0.003272        0.911        0.923
##   522   4807       1    0.917 0.003277        0.910        0.923
##   523   4798       1    0.917 0.003282        0.910        0.923
##   528   4757       2    0.916 0.003292        0.910        0.923
##   538   4653       1    0.916 0.003297        0.910        0.922
##   539   4643       1    0.916 0.003302        0.909        0.922
##   540   4631       1    0.916 0.003307        0.909        0.922
##   544   4595       1    0.915 0.003312        0.909        0.922
##   547   4573       2    0.915 0.003323        0.909        0.922
##   548   4563       1    0.915 0.003328        0.908        0.921
##   551   4527       1    0.915 0.003334        0.908        0.921
##   555   4502       2    0.914 0.003345        0.908        0.921
##   556   4488       1    0.914 0.003350        0.907        0.921
##   565   4379       1    0.914 0.003356        0.907        0.920
##   571   4339       1    0.914 0.003362        0.907        0.920
##   574   4320       1    0.913 0.003367        0.907        0.920
##   576   4303       1    0.913 0.003373        0.907        0.920
##   577   4295       1    0.913 0.003379        0.906        0.920
##   578   4292       2    0.913 0.003391        0.906        0.919
##   587   4233       2    0.912 0.003403        0.905        0.919
##   601   4120       1    0.912 0.003409        0.905        0.919
##   609   4050       1    0.912 0.003416        0.905        0.918
##   613   4009       1    0.911 0.003423        0.905        0.918
##   614   3996       1    0.911 0.003430        0.904        0.918
##   626   3910       1    0.911 0.003437        0.904        0.918
##   628   3888       1    0.911 0.003444        0.904        0.917
##   631   3869       1    0.910 0.003451        0.904        0.917
##   632   3858       1    0.910 0.003458        0.903        0.917
##   639   3791       1    0.910 0.003465        0.903        0.917
##   645   3752       1    0.910 0.003473        0.903        0.917
##   646   3738       1    0.910 0.003481        0.903        0.916
##   649   3697       2    0.909 0.003496        0.902        0.916
##   651   3680       1    0.909 0.003504        0.902        0.916
##   653   3666       1    0.909 0.003512        0.902        0.915
##   657   3629       2    0.908 0.003527        0.901        0.915
##   662   3586       1    0.908 0.003536        0.901        0.915
##   665   3565       1    0.908 0.003544        0.901        0.914
##   668   3535       1    0.907 0.003552        0.900        0.914
##   673   3478       1    0.907 0.003560        0.900        0.914
##   685   3401       1    0.907 0.003569        0.900        0.914
##   691   3353       3    0.906 0.003597        0.899        0.913
##   705   3248       1    0.906 0.003607        0.899        0.913
##   718   3145       1    0.905 0.003617        0.898        0.912
##   719   3133       1    0.905 0.003627        0.898        0.912
##   727   3070       1    0.905 0.003638        0.898        0.912
##   733   3026       1    0.904 0.003649        0.897        0.912
##   741   2969       1    0.904 0.003661        0.897        0.911
##   743   2957       1    0.904 0.003672        0.897        0.911
##   747   2921       2    0.903 0.003696        0.896        0.911
##   754   2863       1    0.903 0.003708        0.896        0.910
##   759   2827       1    0.903 0.003720        0.895        0.910
##   763   2795       1    0.902 0.003733        0.895        0.910
##   767   2760       1    0.902 0.003746        0.895        0.909
##   771   2739       1    0.902 0.003759        0.894        0.909
##   772   2730       1    0.901 0.003772        0.894        0.909
##   775   2701       1    0.901 0.003785        0.894        0.908
##   776   2691       1    0.901 0.003799        0.893        0.908
##   779   2668       1    0.900 0.003812        0.893        0.908
##   794   2521       1    0.900 0.003827        0.892        0.907
##   796   2504       1    0.900 0.003843        0.892        0.907
##   815   2365       1    0.899 0.003860        0.892        0.907
##   827   2271       1    0.899 0.003878        0.891        0.906
##   858   2032       1    0.898 0.003902        0.891        0.906
##   869   1960       1    0.898 0.003926        0.890        0.906
##   878   1896       1    0.897 0.003953        0.890        0.905
##   881   1875       1    0.897 0.003980        0.889        0.905
##   889   1829       1    0.896 0.004007        0.889        0.904
##   891   1815       1    0.896 0.004036        0.888        0.904
##   892   1805       1    0.895 0.004064        0.888        0.903
##   897   1761       1    0.895 0.004093        0.887        0.903
##   902   1733       1    0.894 0.004123        0.886        0.903
##   906   1703       1    0.894 0.004154        0.886        0.902
##   943   1428       1    0.893 0.004198        0.885        0.902
##   946   1420       1    0.893 0.004242        0.884        0.901
##   968   1264       1    0.892 0.004297        0.884        0.900
##  1038   1079       1    0.891 0.004372        0.883        0.900
##  1039   1068       1    0.890 0.004447        0.882        0.899
##  1048   1004       1    0.889 0.004530        0.881        0.898
##  1082    752       1    0.888 0.004676        0.879        0.897
plot(fit0, xlab="Time at risk of violent recidivism in Days", 
   ylab="% not rearrested", yscale=100,
   main ="Survival Distribution (Overall)") 

fitr <- survfit(survobj~sex, data=datfin)
plot(fitr, xlab="Time at risk of violent recidivism in Days", 
   ylab="% not rearrested", yscale=100,
   main="Survival Distribution by sex",
   col = c('red', 'blue')) 
legend('bottomleft', legend=levels(as.factor(datfin$sex)), col = c('red', 'blue'), lty=1)

fitr2 <- survfit(survobj~sexrace, data=datfin)
plot(fitr2, xlab="Time at risk of violent recidivism in Days", 
   ylab="% not rearrested", yscale=100,
   main="Survival Distribution by sex/race",
   col = c('red', 'orange', 'yellow', 'green', 'blue', 'darkblue', 'darkgreen','hotpink')) 
legend('bottomleft', legend=levels(as.factor(datfin$sexrace)), col = c('red', 'orange', 'yellow', 'green', 'blue', 'darkblue', 'darkgreen','hotpink'),lty=1)

survdiff(survobj ~ datfin$sex)
## Call:
## survdiff(formula = survobj ~ datfin$sex)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## datfin$sex=Female 1794       82      153     33.24      42.8
## datfin$sex=Male   6985      609      538      9.49      42.8
## 
##  Chisq= 42.8  on 1 degrees of freedom, p= 6e-11

Cox Proportional Hazards Modeling

*Collapsed Native American and Asian into the “Other” category for analyses including race as a covariate

RESULT HIGHLIGHTS

datfinref <- within(datfin, consolrace <- relevel(consolrace, ref = "Caucasian"))
datfinref <- within(datfinref, sex <- relevel(sex, ref = "Male"))
head(datfin)
##    id  sex age         age_cat             race days_b_screening_arrest
## 1   1 Male  69 Greater than 45            Other                      -1
## 4   3 Male  34         25 - 45 African-American                      -1
## 5   4 Male  24    Less than 25 African-American                      -1
## 12  7 Male  44         25 - 45            Other                       0
## 13  8 Male  41         25 - 45        Caucasian                      -1
## 15  9 Male  43         25 - 45            Other                      -1
##    is_recid violent_recid is_violent_recid decile_score.1 score_text
## 1         0            NA                0              1        Low
## 4         1            NA                1              3        Low
## 5         1            NA                0              4        Low
## 12        0            NA                0              1        Low
## 13        1            NA                0              6     Medium
## 15        0            NA                0              4        Low
##    v_decile_score v_score_text v_screening_date priors_count.1 start end event
## 1               1          Low       2013-08-14              0     0 327     0
## 4               1          Low       2013-01-27              0     9 159     1
## 5               3          Low       2013-04-14              4     0  63     0
## 12              1          Low       2013-11-30              0     1 853     0
## 13              2          Low       2014-02-19             14     5  40     0
## 15              3          Low       2013-08-30              3     0 265     0
##    t_atrisk       consolrace               sexrace
## 1       327            Other            Male Other
## 4       150 African-American Male African-American
## 5        63 African-American Male African-American
## 12      852            Other            Male Other
## 13       35        Caucasian        Male Caucasian
## 15      265            Other            Male Other
summary(coxph(survobj~v_decile_score, data=datfin))
## Call:
## coxph(formula = survobj ~ v_decile_score, data = datfin)
## 
##   n= 8779, number of events= 691 
## 
##                   coef exp(coef) se(coef)     z Pr(>|z|)    
## v_decile_score 0.26203   1.29957  0.01393 18.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                exp(coef) exp(-coef) lower .95 upper .95
## v_decile_score       1.3     0.7695     1.265     1.336
## 
## Concordance= 0.697  (se = 0.01 )
## Likelihood ratio test= 329.5  on 1 df,   p=<2e-16
## Wald test            = 354  on 1 df,   p=<2e-16
## Score (logrank) test = 387.7  on 1 df,   p=<2e-16
summary(coxph(survobj~v_decile_score+sex, data=datfin))
## Call:
## coxph(formula = survobj ~ v_decile_score + sex, data = datfin)
## 
##   n= 8779, number of events= 691 
## 
##                   coef exp(coef) se(coef)      z Pr(>|z|)    
## v_decile_score 0.25273   1.28754  0.01398 18.077  < 2e-16 ***
## sexMale        0.56490   1.75927  0.11845  4.769 1.85e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                exp(coef) exp(-coef) lower .95 upper .95
## v_decile_score     1.288     0.7767     1.253     1.323
## sexMale            1.759     0.5684     1.395     2.219
## 
## Concordance= 0.703  (se = 0.01 )
## Likelihood ratio test= 355.6  on 2 df,   p=<2e-16
## Wald test            = 373.6  on 2 df,   p=<2e-16
## Score (logrank) test = 409.6  on 2 df,   p=<2e-16
summary(coxph(survobj~sex, data=datfin))
## Call:
## coxph(formula = survobj ~ sex, data = datfin)
## 
##   n= 8779, number of events= 691 
## 
##           coef exp(coef) se(coef)     z Pr(>|z|)    
## sexMale 0.7516    2.1204   0.1177 6.388 1.68e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##         exp(coef) exp(-coef) lower .95 upper .95
## sexMale      2.12     0.4716     1.684      2.67
## 
## Concordance= 0.553  (se = 0.006 )
## Likelihood ratio test= 49.22  on 1 df,   p=2e-12
## Wald test            = 40.81  on 1 df,   p=2e-10
## Score (logrank) test = 42.77  on 1 df,   p=6e-11
summary(coxph(survobj~sex*consolrace, data=datfinref))
## Call:
## coxph(formula = survobj ~ sex * consolrace, data = datfinref)
## 
##   n= 8779, number of events= 691 
## 
##                                           coef exp(coef)  se(coef)      z
## sexFemale                            -0.736969  0.478562  0.215061 -3.427
## consolraceAfrican-American            0.545479  1.725434  0.094451  5.775
## consolraceOther                       0.116449  1.123501  0.176779  0.659
## consolraceHispanic                   -0.320675  0.725659  0.191190 -1.677
## sexFemale:consolraceAfrican-American  0.005916  1.005934  0.262537  0.023
## sexFemale:consolraceOther            -0.796556  0.450879  0.755814 -1.054
## sexFemale:consolraceHispanic          0.320587  1.377936  0.525888  0.610
##                                      Pr(>|z|)    
## sexFemale                            0.000611 ***
## consolraceAfrican-American           7.68e-09 ***
## consolraceOther                      0.510071    
## consolraceHispanic                   0.093492 .  
## sexFemale:consolraceAfrican-American 0.982022    
## sexFemale:consolraceOther            0.291927    
## sexFemale:consolraceHispanic         0.542120    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                      exp(coef) exp(-coef) lower .95 upper .95
## sexFemale                               0.4786     2.0896    0.3140    0.7295
## consolraceAfrican-American              1.7254     0.5796    1.4338    2.0763
## consolraceOther                         1.1235     0.8901    0.7945    1.5887
## consolraceHispanic                      0.7257     1.3781    0.4989    1.0555
## sexFemale:consolraceAfrican-American    1.0059     0.9941    0.6013    1.6828
## sexFemale:consolraceOther               0.4509     2.2179    0.1025    1.9834
## sexFemale:consolraceHispanic            1.3779     0.7257    0.4916    3.8625
## 
## Concordance= 0.613  (se = 0.01 )
## Likelihood ratio test= 111.6  on 7 df,   p=<2e-16
## Wald test            = 98.28  on 7 df,   p=<2e-16
## Score (logrank) test = 106.4  on 7 df,   p=<2e-16
summary(coxph(survobj~sex*consolrace + v_decile_score, data=datfinref))
## Call:
## coxph(formula = survobj ~ sex * consolrace + v_decile_score, 
##     data = datfinref)
## 
##   n= 8779, number of events= 691 
## 
##                                          coef exp(coef) se(coef)      z
## sexFemale                            -0.61378   0.54130  0.21531 -2.851
## consolraceAfrican-American            0.18189   1.19948  0.09730  1.869
## consolraceOther                       0.20257   1.22454  0.17690  1.145
## consolraceHispanic                   -0.35861   0.69864  0.19122 -1.875
## v_decile_score                        0.24294   1.27499  0.01465 16.578
## sexFemale:consolraceAfrican-American  0.09983   1.10499  0.26259  0.380
## sexFemale:consolraceOther            -0.96178   0.38221  0.75597 -1.272
## sexFemale:consolraceHispanic          0.42991   1.53712  0.52599  0.817
##                                      Pr(>|z|)    
## sexFemale                             0.00436 ** 
## consolraceAfrican-American            0.06158 .  
## consolraceOther                       0.25218    
## consolraceHispanic                    0.06073 .  
## v_decile_score                        < 2e-16 ***
## sexFemale:consolraceAfrican-American  0.70381    
## sexFemale:consolraceOther             0.20329    
## sexFemale:consolraceHispanic          0.41374    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                      exp(coef) exp(-coef) lower .95 upper .95
## sexFemale                               0.5413     1.8474   0.35495    0.8255
## consolraceAfrican-American              1.1995     0.8337   0.99122    1.4515
## consolraceOther                         1.2245     0.8166   0.86575    1.7320
## consolraceHispanic                      0.6986     1.4313   0.48028    1.0163
## v_decile_score                          1.2750     0.7843   1.23889    1.3121
## sexFemale:consolraceAfrican-American    1.1050     0.9050   0.66045    1.8487
## sexFemale:consolraceOther               0.3822     2.6163   0.08686    1.6818
## sexFemale:consolraceHispanic            1.5371     0.6506   0.54826    4.3095
## 
## Concordance= 0.708  (se = 0.01 )
## Likelihood ratio test= 371.4  on 8 df,   p=<2e-16
## Wald test            = 381.6  on 8 df,   p=<2e-16
## Score (logrank) test = 421.9  on 8 df,   p=<2e-16
summary(coxph(survobj~sex*consolrace + v_decile_score + age + priors_count.1, data=datfinref))
## Call:
## coxph(formula = survobj ~ sex * consolrace + v_decile_score + 
##     age + priors_count.1, data = datfinref)
## 
##   n= 8779, number of events= 691 
## 
##                                           coef exp(coef)  se(coef)      z
## sexFemale                            -0.581090  0.559288  0.215458 -2.697
## consolraceAfrican-American            0.069650  1.072133  0.098305  0.709
## consolraceOther                       0.219631  1.245618  0.177195  1.239
## consolraceHispanic                   -0.367113  0.692731  0.191378 -1.918
## v_decile_score                        0.196476  1.217106  0.018453 10.647
## age                                  -0.011681  0.988387  0.004735 -2.467
## priors_count.1                        0.064594  1.066726  0.007056  9.155
## sexFemale:consolraceAfrican-American  0.160350  1.173921  0.262845  0.610
## sexFemale:consolraceOther            -0.942704  0.389573  0.755954 -1.247
## sexFemale:consolraceHispanic          0.424874  1.529398  0.526022  0.808
##                                      Pr(>|z|)    
## sexFemale                              0.0070 ** 
## consolraceAfrican-American             0.4786    
## consolraceOther                        0.2152    
## consolraceHispanic                     0.0551 .  
## v_decile_score                         <2e-16 ***
## age                                    0.0136 *  
## priors_count.1                         <2e-16 ***
## sexFemale:consolraceAfrican-American   0.5418    
## sexFemale:consolraceOther              0.2124    
## sexFemale:consolraceHispanic           0.4193    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                      exp(coef) exp(-coef) lower .95 upper .95
## sexFemale                               0.5593     1.7880   0.36664    0.8532
## consolraceAfrican-American              1.0721     0.9327   0.88424    1.2999
## consolraceOther                         1.2456     0.8028   0.88015    1.7628
## consolraceHispanic                      0.6927     1.4436   0.47606    1.0080
## v_decile_score                          1.2171     0.8216   1.17387    1.2619
## age                                     0.9884     1.0117   0.97926    0.9976
## priors_count.1                          1.0667     0.9374   1.05208    1.0816
## sexFemale:consolraceAfrican-American    1.1739     0.8518   0.70130    1.9650
## sexFemale:consolraceOther               0.3896     2.5669   0.08854    1.7142
## sexFemale:consolraceHispanic            1.5294     0.6539   0.54547    4.2882
## 
## Concordance= 0.726  (se = 0.01 )
## Likelihood ratio test= 444.3  on 10 df,   p=<2e-16
## Wald test            = 482.4  on 10 df,   p=<2e-16
## Score (logrank) test = 543.5  on 10 df,   p=<2e-16