Background

Methods

Tissue Collection

Genomic Data

Data Analysis

Results

Conclusion

With SNPs developed, a thorough investigation of genetic structure in longleaf pine requires more data!

Next steps:

  1. Collect needles from many more trees at at least 30 sites across the range.
  2. Use sequence capture (Gnirke et al. 2009) to recover the same loci with thousands of SNPs repeatably and cheaply.
  3. Conduct more comprehensive analyses of population genetic structure.

References

Bayona-Vásquez, N.J., Glenn, T.C., Kieran, T.J., Pierson, T.W., Hoffberg, S.L., Scott, P.A., Bentley, K.E., Finger, J.W., Louha, S., Troendle, N. and Díaz-Jaimes, P. 2019. Adapterama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD). PeerJ, 7:e7724. doi:10.7717/peerj.7755

Boyer, W. D., and Evans, S. R. 1967. Early flowering in longleaf pine related to seed source. Journal of Forestry, 65(11):806.

Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. and Cresko, W.A. 2013. Stacks: an analysis tool set for population genomics. Molecular ecology, 22(11):3124-3140. doi:10.1111/mec.12354

Duba, S. E. 1985. Polymorphic isoenzymes from megagametophytes and pollen of longleaf pine: characterization, inheritance and use in analyses of genetic variation and genotype verification. Proceedings of the 18th Southern Forest Tree Improvement Conference.

Echt, C., Josserand, S., Hipkins, V., and Crane, B. 2012. Patterns of Longleaf Pine Genetic Diversity. 9th Regional Longleaf Conference, 23 Oct. 2012, Nacogdoches, TX.

Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E.M., Brockman, W., Fennell, T., Giannoukos, G., Fisher, S., Russ, C. and Gabriel, S. 2009. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature biotechnology, 27(2):182-189. doi:10.1038/nbt.1523

Johnsen, K. H., Creighton, J. L., and Maier, C. A. 2015. Longleaf pine grown in Virginia: a provenance test (e-Gen. Tech. Rep. SRS-203). Proceedings of the 17th Biennial Southern Silvicultural Research Conference.

Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24:1403-1405. doi:10.1093/bioinformatics/btn129

Jombart, T. and Ahmed, I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. doi:10.1093/bioinformatics/btr521

Jombart, T., Devillard, S., and Balloux, F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11:94. doi:10.1186/1471-2156-11-94

Kraus, J., and Sluder, E. 1990. Genecology of Longleaf Pine in Georgia and Florida (Res. Paper SE-278). Asheville, North Carolina.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Samuelson, L., Johnsen, K., Stokes, T., Anderson, P., and Nelson, C. D. 2018. Provenance variation in Pinus palustris foliar δ13C. Forests, 9(8):466. doi:10.3390/f9080466

Schmidtling, R. C., and Hipkins, V. 1998. Genetic diversity in longleaf pine (Pinus palustris): influence of historical and prehistorical events. Canadian Journal of Forest Research, 28(8):1135–1145.