1 load data and see it

##   School Teacher Pupil      Read_0 Read_1
## 1      1      11    18 -0.16407000 4.2426
## 2      1      11    19 -0.98126000 1.0000
## 3      1      11    20 -1.25370000 2.2361
## 4      1      11    15 -0.87230000 3.1623
## 5      1      11    17 -0.00063104 3.4641
## 6      1      11    16 -0.92678000 4.0000

2 model

## Linear mixed model fit by REML ['lmerMod']
## Formula: Read_1 ~ (1 | School) + (1 | Teacher)
##    Data: dta
## 
## REML criterion at convergence: 2486.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.05439 -0.65686  0.06497  0.62523  2.47233 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Teacher  (Intercept) 0.1370   0.3701  
##  School   (Intercept) 0.1277   0.3574  
##  Residual             1.3250   1.1511  
## Number of obs: 777, groups:  Teacher, 46; School, 20
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   3.3755     0.1065   31.69
  Read_1
Predictors Estimates CI
(Intercept) 3.38 3.17 – 3.58
Random Effects
σ2 1.32
τ00 Teacher 0.14
τ00 School 0.13
ICC 0.17
N School 20
N Teacher 46
Observations 777

The estimate reading attainment score at the end of year is 3.38

Intraclass correlation coefficient is 0.17

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: Read_1 ~ (1 | School) + (1 | Teacher) + msRead_0
##    Data: dta
## 
## REML criterion at convergence: 2467.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.06110 -0.65597  0.06822  0.62772  2.45391 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Teacher  (Intercept) 0.1234   0.3513  
##  School   (Intercept) 0.0000   0.0000  
##  Residual             1.3224   1.1500  
## Number of obs: 777, groups:  Teacher, 46; School, 20
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  3.39822    0.06808  49.918
## msRead_0     1.00159    0.17807   5.625
## 
## Correlation of Fixed Effects:
##          (Intr)
## msRead_0 0.086 
## convergence code: 0
## boundary (singular) fit: see ?isSingular
  Read_1 Read_1
Predictors Estimates std. Error Estimates std. Error
(Intercept) 3.38 0.11 3.40 0.07
msRead_0 1.00 0.18
Random Effects
σ2 1.32 1.32
τ00 0.14 Teacher 0.12 Teacher
0.13 School 0.00 School
ICC 0.17  

Add a school-level predictor, we can find τ00 of school become 0.

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: Read_1 ~ (1 | School) + (1 | Teacher) + mtRead_0
##    Data: dta
## 
## REML criterion at convergence: 2434.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.07539 -0.65980  0.06707  0.63259  2.49973 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Teacher  (Intercept) 0.00000  0.0000  
##  School   (Intercept) 0.04471  0.2114  
##  Residual             1.30860  1.1439  
## Number of obs: 777, groups:  Teacher, 46; School, 20
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  3.40649    0.06307  54.010
## mtRead_0     1.07319    0.11495   9.336
## 
## Correlation of Fixed Effects:
##          (Intr)
## mtRead_0 0.024 
## convergence code: 0
## boundary (singular) fit: see ?isSingular
  Read_1 Read_1
Predictors Estimates std. Error Estimates std. Error
(Intercept) 3.38 0.11 3.41 0.06
mtRead_0 1.07 0.11
Random Effects
σ2 1.32 1.31
τ00 0.14 Teacher 0.00 Teacher
0.13 School 0.04 School
ICC 0.17  

Add a teacher-level predictor, we can find τ00 of teacher become 0.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00376183 (tol = 0.002, component 1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Read_1 ~ (1 | School) + (1 | Teacher) + ctRead_0
##    Data: dta
## 
## REML criterion at convergence: 2454.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1804 -0.6461  0.0791  0.6420  2.5272 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  Teacher  (Intercept) 7.227e-08 0.0002688
##  School   (Intercept) 1.763e-01 0.4199281
##  Residual             1.311e+00 1.1449203
## Number of obs: 777, groups:  Teacher, 46; School, 20
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   3.3896     0.1029  32.935
## ctRead_0      1.1742     0.1581   7.427
## 
## Correlation of Fixed Effects:
##          (Intr)
## ctRead_0 0.000 
## convergence code: 0
## Model failed to converge with max|grad| = 0.00376183 (tol = 0.002, component 1)
  Read_1 Read_1
Predictors Estimates std. Error Estimates std. Error
(Intercept) 3.38 0.11 3.39 0.10
ctRead_0 1.17 0.16
Random Effects
σ2 1.32 1.31
τ00 0.14 Teacher 0.00 Teacher
0.13 School 0.18 School
ICC 0.17 0.12

add a teacher-level predictor away from respective school means,the τ00 of teacher also become 0.