1 null

## Loading required package: Matrix
## 
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
## 
##     lmList
## -- Attaching packages ------------------------------------------ tidyverse 1.3.0 --
## √ ggplot2 3.3.0     √ purrr   0.3.3
## √ tibble  2.1.3     √ dplyr   0.8.5
## √ tidyr   1.0.2     √ stringr 1.4.0
## √ readr   1.3.1     √ forcats 0.5.0
## -- Conflicts --------------------------------------------- tidyverse_conflicts() --
## x dplyr::collapse() masks nlme::collapse()
## x tidyr::expand()   masks Matrix::expand()
## x dplyr::filter()   masks stats::filter()
## x dplyr::lag()      masks stats::lag()
## x tidyr::pack()     masks Matrix::pack()
## x tidyr::unpack()   masks Matrix::unpack()
## Warning in data(Hsb82, "mlmRev"): data set 'mlmRev' not found
## starting httpd help server ...
##  done
## 'data.frame':    7185 obs. of  8 variables:
##  $ school : Ord.factor w/ 160 levels "8367"<"8854"<..: 59 59 59 59 59 59 59 59 59 59 ...
##  $ minrty : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sx     : Factor w/ 2 levels "Male","Female": 2 2 1 1 1 1 2 1 2 1 ...
##  $ ses    : num  -1.528 -0.588 -0.528 -0.668 -0.158 ...
##  $ mAch   : num  5.88 19.71 20.35 8.78 17.9 ...
##  $ meanses: num  -0.434 -0.434 -0.434 -0.434 -0.434 ...
##  $ sector : Factor w/ 2 levels "Public","Catholic": 1 1 1 1 1 1 1 1 1 1 ...
##  $ cses   : num  -1.0936 -0.1536 -0.0936 -0.2336 0.2764 ...
##   School Minority Gender    SES   Math   Ave_SES Sector       C_SES
## 1   1224       No Female -1.528  5.876 -0.434383 Public -1.09361702
## 2   1224       No Female -0.588 19.708 -0.434383 Public -0.15361702
## 3   1224       No   Male -0.528 20.349 -0.434383 Public -0.09361702
## 4   1224       No   Male -0.668  8.781 -0.434383 Public -0.23361702
## 5   1224       No   Male -0.158 17.898 -0.434383 Public  0.27638298
## 6   1224       No   Male  0.022  4.583 -0.434383 Public  0.45638298

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.24   10.47   12.90   12.62   14.65   19.72
## [1] 3.117651
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -2.832   7.275  13.131  12.748  18.317  24.993
## [1] 6.878246

## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ (1 | School)
##    Data: dta
## 
## REML criterion at convergence: 47116.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0631 -0.7539  0.0267  0.7606  2.7426 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept)  8.614   2.935   
##  Residual             39.148   6.257   
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.6370     0.2444   51.71
  Math
Predictors Estimates CI
(Intercept) 12.64 12.16 – 13.12
Random Effects
σ2 39.15
τ00 School 8.61
ICC 0.18
N School 160
Observations 7185

The correlation between Math scores of student attending the same school is 0.18

About 18% of variation in Math scores can be attributed to differences in schools.

## Computing bootstrap confidence intervals ...
## 
## 1 warning(s): Model failed to converge with max|grad| = 0.00433476 (tol = 0.002, component 1)
##                 2.5 %    97.5 %
## .sig01       2.596281  3.333500
## .sigma       6.151525  6.360499
## (Intercept) 12.128943 13.114645

2 model 2

## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ (1 | School)
##    Data: dta
## 
## REML criterion at convergence: 47116.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0631 -0.7539  0.0267  0.7606  2.7426 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept)  8.614   2.935   
##  Residual             39.148   6.257   
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.6370     0.2444   51.71
## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ Ave_SES + (1 | School)
##    Data: dta
## 
## REML criterion at convergence: 46961.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13493 -0.75254  0.02413  0.76766  2.78515 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept)  2.639   1.624   
##  Residual             39.157   6.258   
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.6846     0.1493   84.97
## Ave_SES       5.8635     0.3615   16.22
## 
## Correlation of Fixed Effects:
##         (Intr)
## Ave_SES 0.010
  Math Math
Predictors Estimates std. Error Estimates std. Error
(Intercept) 12.64 0.24 12.68 0.15
Ave_SES 5.86 0.36
Random Effects
σ2 39.15 39.16
τ00 8.61 School 2.64 School
ICC 0.18 0.06

The estimated overall mean math score is 12.64.

The estimated overall mean math score for school,controlling for school’s mean SES is 12.68.

For one point increase in Ave_SES, Math score drops by 0.46 point, on average.

About 0.02% (= 0.01/39.15) of variance in Mean scores can be attributed to differences in Ave_SES among student attending different schools

## 
## Call:
## lm(formula = Math ~ Ave_SES, data = dta)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -19.4520  -4.8332   0.1735   5.1117  16.2787 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.74703    0.07621  167.27   <2e-16 ***
## Ave_SES      5.71688    0.18429   31.02   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.46 on 7183 degrees of freedom
## Multiple R-squared:  0.1181, Adjusted R-squared:  0.118 
## F-statistic: 962.3 on 1 and 7183 DF,  p-value: < 2.2e-16
## `geom_smooth()` using formula 'y ~ x'

## `geom_smooth()` using formula 'y ~ x'

3 model 3

## `geom_smooth()` using formula 'y ~ x'

## 
## Call:
## lm(formula = Math ~ School/C_SES - 1, data = dta)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -19.2662  -4.3241   0.1164   4.4434  18.3617 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## School8367        4.55279    1.61953   2.811 0.004950 ** 
## School8854        4.23978    1.07122   3.958 7.64e-05 ***
## School4458        5.81140    0.87465   6.644 3.28e-11 ***
## School5762        4.32486    0.99621   4.341 1.44e-05 ***
## School6990        5.97679    0.83237   7.180 7.68e-13 ***
## School5815        7.27136    1.21194   6.000 2.08e-09 ***
## School7172        8.06682    0.91354   8.830  < 2e-16 ***
## School4868       12.31018    1.03923  11.845  < 2e-16 ***
## School7341        9.79418    0.84853  11.543  < 2e-16 ***
## School1358       11.20623    1.10635  10.129  < 2e-16 ***
## School4383       11.46568    1.21194   9.461  < 2e-16 ***
## School2305       11.13776    0.74031  15.045  < 2e-16 ***
## School8800        7.33594    1.07122   6.848 8.13e-12 ***
## School3088        9.14585    0.97033   9.425  < 2e-16 ***
## School8775        9.46700    0.87465  10.824  < 2e-16 ***
## School7890        8.34110    0.84853   9.830  < 2e-16 ***
## School6144        8.54507    0.92410   9.247  < 2e-16 ***
## School6443        9.47553    1.10635   8.565  < 2e-16 ***
## School5192       10.40950    1.14518   9.090  < 2e-16 ***
## School6808        9.28611    0.91354  10.165  < 2e-16 ***
## School2818       13.87283    0.93504  14.837  < 2e-16 ***
## School9340       11.17855    1.12526   9.934  < 2e-16 ***
## School4523        8.35174    0.88390   9.449  < 2e-16 ***
## School6816       14.53824    0.81709  17.793  < 2e-16 ***
## School2277        9.29761    0.77587  11.983  < 2e-16 ***
## School8009       14.08472    0.88390  15.935  < 2e-16 ***
## School5783       13.15034    1.12526  11.686  < 2e-16 ***
## School3013       12.61083    0.83237  15.151  < 2e-16 ***
## School7101       11.84993    1.14518  10.348  < 2e-16 ***
## School4530        9.05570    0.76345  11.861  < 2e-16 ***
## School9021       14.69666    0.80976  18.149  < 2e-16 ***
## School4511       13.40903    0.79568  16.852  < 2e-16 ***
## School2639        6.61548    0.93504   7.075 1.64e-12 ***
## School3377        9.18671    0.90333  10.170  < 2e-16 ***
## School6578       11.99400    0.80976  14.812  < 2e-16 ***
## School9347       13.53875    0.80263  16.868  < 2e-16 ***
## School3705       10.33169    0.90333  11.437  < 2e-16 ***
## School3533       10.40904    0.87465  11.901  < 2e-16 ***
## School1296        7.63596    0.87465   8.730  < 2e-16 ***
## School4350       11.85542    1.05486  11.239  < 2e-16 ***
## School9397       10.35547    0.88390  11.716  < 2e-16 ***
## School4253        9.41286    0.79568  11.830  < 2e-16 ***
## School2655       12.34517    0.84033  14.691  < 2e-16 ***
## School7342       11.16641    0.79568  14.034  < 2e-16 ***
## School9292       10.27963    1.39020   7.394 1.59e-13 ***
## School3499       13.27653    0.98302  13.506  < 2e-16 ***
## School7364       14.17214    0.91354  15.513  < 2e-16 ***
## School8983       10.99200    0.84853  12.954  < 2e-16 ***
## School5650       14.27353    0.90333  15.801  < 2e-16 ***
## School2658       13.39616    0.90333  14.830  < 2e-16 ***
## School8188       12.74097    1.10635  11.516  < 2e-16 ***
## School4410       13.47298    0.94637  14.236  < 2e-16 ***
## School9508       13.57466    1.02428  13.253  < 2e-16 ***
## School8707       12.88394    0.87465  14.730  < 2e-16 ***
## School1499        7.66036    0.83237   9.203  < 2e-16 ***
## School8477       12.52224    0.99621  12.570  < 2e-16 ***
## School1288       13.51080    1.21194  11.148  < 2e-16 ***
## School6291       10.10731    1.02428   9.868  < 2e-16 ***
## School1224        9.71545    0.88390  10.992  < 2e-16 ***
## School4292       12.86435    0.75162  17.116  < 2e-16 ***
## School8857       15.29694    0.75747  20.195  < 2e-16 ***
## School3967       12.03508    0.84033  14.322  < 2e-16 ***
## School6415       11.86020    0.82462  14.383  < 2e-16 ***
## School1317       13.17769    0.87465  15.066  < 2e-16 ***
## School2629       14.90777    0.80263  18.574  < 2e-16 ***
## School4223       14.62262    0.90333  16.187  < 2e-16 ***
## School1462       10.49556    0.80263  13.076  < 2e-16 ***
## School9550       11.08914    1.12526   9.855  < 2e-16 ***
## School6464        7.09162    1.12526   6.302 3.12e-10 ***
## School4931       13.79081    0.79568  17.332  < 2e-16 ***
## School5937       16.77597    1.12526  14.908  < 2e-16 ***
## School7919       14.84997    0.99621  14.906  < 2e-16 ***
## School3716       10.36866    0.94637  10.956  < 2e-16 ***
## School1909       14.42332    1.14518  12.595  < 2e-16 ***
## School2651       11.08432    0.98302  11.276  < 2e-16 ***
## School2467       10.14752    0.84033  12.076  < 2e-16 ***
## School1374        9.72846    1.14518   8.495  < 2e-16 ***
## School6600       11.70389    0.80976  14.453  < 2e-16 ***
## School5667       13.77823    0.77587  17.758  < 2e-16 ***
## School5720       14.28230    0.83237  17.159  < 2e-16 ***
## School3498       16.39045    0.83237  19.691  < 2e-16 ***
## School3881       11.94922    0.94637  12.626  < 2e-16 ***
## School2995        9.54611    0.89346  10.684  < 2e-16 ***
## School5838       13.68961    1.08836  12.578  < 2e-16 ***
## School3688       14.65626    0.92410  15.860  < 2e-16 ***
## School9158        8.54517    0.83237  10.266  < 2e-16 ***
## School8946       10.37509    0.79568  13.039  < 2e-16 ***
## School7232       12.54263    0.84033  14.926  < 2e-16 ***
## School2917        7.97895    0.92410   8.634  < 2e-16 ***
## School6170       14.18105    1.32234  10.724  < 2e-16 ***
## School8165       16.45122    0.86567  19.004  < 2e-16 ***
## School9104       16.83211    0.81709  20.600  < 2e-16 ***
## School2030       12.07819    0.88390  13.665  < 2e-16 ***
## School8150       14.85236    0.91354  16.258  < 2e-16 ***
## School4042       14.31542    0.75747  18.899  < 2e-16 ***
## School8357       14.38185    1.16619  12.332  < 2e-16 ***
## School8531       13.52868    0.94637  14.295  < 2e-16 ***
## School6074       13.77909    0.80976  17.016  < 2e-16 ***
## School4420       13.87416    1.07122  12.952  < 2e-16 ***
## School1906       15.98317    0.83237  19.202  < 2e-16 ***
## School3992       14.64521    0.83237  17.595  < 2e-16 ***
## School3999       10.94404    0.89346  12.249  < 2e-16 ***
## School4173       12.72466    0.91354  13.929  < 2e-16 ***
## School4325       13.24000    0.83237  15.906  < 2e-16 ***
## School5761       11.13806    0.84033  13.254  < 2e-16 ***
## School6484       12.91240    1.02428  12.606  < 2e-16 ***
## School6897       15.09763    0.86567  17.440  < 2e-16 ***
## School7635       15.06553    0.84853  17.755  < 2e-16 ***
## School7734       10.55964    1.29194   8.173 3.54e-16 ***
## School8175       11.69809    1.05486  11.090  < 2e-16 ***
## School8874       12.05503    1.00995  11.936  < 2e-16 ***
## School9225       14.66733    1.00995  14.523  < 2e-16 ***
## School2458       13.98568    0.80263  17.425  < 2e-16 ***
## School3610       15.35495    0.75747  20.271  < 2e-16 ***
## School5640       13.16011    0.80263  16.396  < 2e-16 ***
## School3838       16.06281    0.82462  19.479  < 2e-16 ***
## School9359       15.27062    0.83237  18.346  < 2e-16 ***
## School2208       15.40467    0.78231  19.691  < 2e-16 ***
## School6089       15.56958    1.05486  14.760  < 2e-16 ***
## School1477       14.22847    0.76959  18.488  < 2e-16 ***
## School2768       10.88692    1.21194   8.983  < 2e-16 ***
## School3039       16.96386    1.32234  12.829  < 2e-16 ***
## School5819       12.13890    0.85697  14.165  < 2e-16 ***
## School6397       12.79610    0.78231  16.357  < 2e-16 ***
## School1308       16.25550    1.35500  11.997  < 2e-16 ***
## School1433       19.71914    1.02428  19.252  < 2e-16 ***
## School1436       18.11161    0.91354  19.826  < 2e-16 ***
## School1461       16.84264    1.05486  15.967  < 2e-16 ***
## School1637        7.02411    1.16619   6.023 1.80e-09 ***
## School1942       18.11090    1.12526  16.095  < 2e-16 ***
## School1946       12.90844    0.97033  13.303  < 2e-16 ***
## School2336       16.51770    0.88390  18.687  < 2e-16 ***
## School2526       17.05300    0.80263  21.246  < 2e-16 ***
## School2626       13.39661    0.98302  13.628  < 2e-16 ***
## School2755       16.47651    0.88390  18.641  < 2e-16 ***
## School2771       11.84411    0.81709  14.495  < 2e-16 ***
## School2990       18.44792    0.87465  21.092  < 2e-16 ***
## School3020       14.39527    0.78891  18.247  < 2e-16 ***
## School3152       13.20904    0.84033  15.719  < 2e-16 ***
## School3332       14.27816    0.98302  14.525  < 2e-16 ***
## School3351       11.46518    0.97033  11.816  < 2e-16 ***
## School3427       19.71559    0.86567  22.775  < 2e-16 ***
## School3657        9.52118    0.84853  11.221  < 2e-16 ***
## School4642       14.59903    0.77587  18.816  < 2e-16 ***
## School5404       15.41498    0.80263  19.206  < 2e-16 ***
## School5619       15.41624    0.74590  20.668  < 2e-16 ***
## School6366       15.65640    0.79568  19.677  < 2e-16 ***
## School6469       18.45572    0.80263  22.994  < 2e-16 ***
## School7011       13.81358    1.05486  13.095  < 2e-16 ***
## School7276       12.67940    0.83237  15.233  < 2e-16 ***
## School7332       14.63610    0.87465  16.734  < 2e-16 ***
## School7345       11.33855    0.80976  14.002  < 2e-16 ***
## School7688       18.42231    0.82462  22.340  < 2e-16 ***
## School7697       15.72178    1.07122  14.677  < 2e-16 ***
## School8193       16.23226    0.92410  17.565  < 2e-16 ***
## School8202       11.71243    1.02428  11.435  < 2e-16 ***
## School8627       10.88372    0.83237  13.076  < 2e-16 ***
## School8628       16.52838    0.77587  21.303  < 2e-16 ***
## School9198       19.09229    1.08836  17.542  < 2e-16 ***
## School9586       14.86369    0.78891  18.841  < 2e-16 ***
## School8367:C_SES  0.25037    2.22488   0.113 0.910403    
## School8854:C_SES  1.93884    1.35428   1.432 0.152292    
## School4458:C_SES  1.13184    1.36793   0.827 0.408034    
## School5762:C_SES -1.01410    1.95950  -0.518 0.604803    
## School6990:C_SES  0.94769    0.98169   0.965 0.334393    
## School5815:C_SES  3.01800    2.16485   1.394 0.163335    
## School7172:C_SES  0.99448    1.36612   0.728 0.466662    
## School4868:C_SES  1.28647    1.48571   0.866 0.386576    
## School7341:C_SES  1.70370    1.00528   1.695 0.090169 .  
## School1358:C_SES  5.06801    1.71168   2.961 0.003078 ** 
## School4383:C_SES  6.18019    2.11601   2.921 0.003504 ** 
## School2305:C_SES -0.78211    1.13763  -0.687 0.491795    
## School8800:C_SES  2.56813    1.42668   1.800 0.071893 .  
## School3088:C_SES  1.79134    1.23144   1.455 0.145807    
## School8775:C_SES  1.00146    1.32013   0.759 0.448114    
## School7890:C_SES -0.65597    1.44460  -0.454 0.649784    
## School6144:C_SES  2.77027    1.30158   2.128 0.033340 *  
## School6443:C_SES -0.74335    1.46027  -0.509 0.610734    
## School5192:C_SES  1.60349    1.46102   1.098 0.272452    
## School6808:C_SES  2.27610    1.15285   1.974 0.048384 *  
## School2818:C_SES  2.80241    1.52348   1.839 0.065888 .  
## School9340:C_SES  3.30950    2.00186   1.653 0.098334 .  
## School4523:C_SES  2.38079    1.24545   1.912 0.055971 .  
## School6816:C_SES  1.35272    1.16781   1.158 0.246767    
## School2277:C_SES -2.01503    1.17745  -1.711 0.087062 .  
## School8009:C_SES  1.55687    1.58675   0.981 0.326542    
## School5783:C_SES  3.11406    1.49402   2.084 0.037165 *  
## School3013:C_SES  3.83980    1.75094   2.193 0.028341 *  
## School7101:C_SES  1.29545    1.42842   0.907 0.364484    
## School4530:C_SES  1.64743    1.23926   1.329 0.183771    
## School9021:C_SES  2.52416    1.39478   1.810 0.070384 .  
## School4511:C_SES  0.04251    1.38066   0.031 0.975438    
## School2639:C_SES -0.63010    1.52971  -0.412 0.680417    
## School3377:C_SES -0.74685    1.31955  -0.566 0.571419    
## School6578:C_SES  2.39054    1.30725   1.829 0.067492 .  
## School9347:C_SES  2.68599    1.18051   2.275 0.022920 *  
## School3705:C_SES  1.15850    1.33049   0.871 0.383933    
## School3533:C_SES -0.31177    1.64469  -0.190 0.849658    
## School1296:C_SES  1.07596    1.36610   0.788 0.430948    
## School4350:C_SES  4.37192    1.59458   2.742 0.006127 ** 
## School9397:C_SES  2.44644    1.47583   1.658 0.097430 .  
## School4253:C_SES -0.39954    1.15329  -0.346 0.729023    
## School2655:C_SES  5.22704    1.35364   3.861 0.000114 ***
## School7342:C_SES  1.01246    1.42097   0.713 0.476173    
## School9292:C_SES  0.75868    2.74811   0.276 0.782501    
## School3499:C_SES  0.99238    1.58184   0.627 0.530445    
## School7364:C_SES  0.25950    1.82833   0.142 0.887139    
## School8983:C_SES  1.38594    1.34299   1.032 0.302119    
## School5650:C_SES  0.68062    1.17460   0.579 0.562308    
## School2658:C_SES  2.62990    1.42677   1.843 0.065335 .  
## School8188:C_SES  4.39759    1.65556   2.656 0.007920 ** 
## School4410:C_SES  2.76020    1.55700   1.773 0.076312 .  
## School9508:C_SES  3.95379    1.82178   2.170 0.030019 *  
## School8707:C_SES  3.39153    1.09903   3.086 0.002037 ** 
## School1499:C_SES  3.63473    1.16428   3.122 0.001805 ** 
## School8477:C_SES  3.81216    1.25548   3.036 0.002403 ** 
## School1288:C_SES  3.25545    1.84816   1.761 0.078205 .  
## School6291:C_SES  3.98087    1.69353   2.351 0.018770 *  
## School1224:C_SES  2.50858    1.42433   1.761 0.078243 .  
## School4292:C_SES -0.16061    1.16329  -0.138 0.890195    
## School8857:C_SES  0.80222    1.43452   0.559 0.576025    
## School3967:C_SES  3.31107    1.35069   2.451 0.014255 *  
## School6415:C_SES  3.53008    1.21524   2.905 0.003686 ** 
## School1317:C_SES  1.27391    1.58930   0.802 0.422837    
## School2629:C_SES  0.22235    1.14645   0.194 0.846225    
## School4223:C_SES  2.48659    1.50770   1.649 0.099140 .  
## School1462:C_SES -0.82881    1.39839  -0.593 0.553411    
## School9550:C_SES  3.89194    1.45938   2.667 0.007675 ** 
## School6464:C_SES  1.00349    1.82459   0.550 0.582348    
## School4931:C_SES  0.91185    1.17597   0.775 0.438133    
## School5937:C_SES  1.03962    2.00531   0.518 0.604175    
## School7919:C_SES  3.98937    1.88178   2.120 0.034042 *  
## School3716:C_SES  5.86379    1.18088   4.966 7.01e-07 ***
## School1909:C_SES  2.85479    1.63722   1.744 0.081260 .  
## School2651:C_SES  4.89906    1.55631   3.148 0.001652 ** 
## School2467:C_SES  3.13713    1.65830   1.892 0.058563 .  
## School1374:C_SES  3.85432    1.66836   2.310 0.020904 *  
## School6600:C_SES  4.70429    1.16489   4.038 5.44e-05 ***
## School5667:C_SES  3.52297    1.24071   2.839 0.004532 ** 
## School5720:C_SES  2.46631    1.26524   1.949 0.051302 .  
## School3498:C_SES -0.13109    1.45712  -0.090 0.928320    
## School3881:C_SES  2.39071    1.79271   1.334 0.182388    
## School2995:C_SES  1.43231    1.01804   1.407 0.159492    
## School5838:C_SES  1.85305    1.77992   1.041 0.297872    
## School3688:C_SES  1.53672    1.72035   0.893 0.371749    
## School9158:C_SES  3.86121    1.12532   3.431 0.000604 ***
## School8946:C_SES  1.69048    1.06749   1.584 0.113331    
## School7232:C_SES  5.00160    1.47738   3.385 0.000715 ***
## School2917:C_SES  1.13585    1.02982   1.103 0.270083    
## School6170:C_SES  4.81178    1.64962   2.917 0.003547 ** 
## School8165:C_SES  1.80224    1.38480   1.301 0.193148    
## School9104:C_SES  1.49398    1.83440   0.814 0.415430    
## School2030:C_SES  1.41198    1.31420   1.074 0.282681    
## School8150:C_SES -0.18571    1.51064  -0.123 0.902162    
## School4042:C_SES  1.69362    1.20501   1.405 0.159922    
## School8357:C_SES  2.67578    1.15717   2.312 0.020788 *  
## School8531:C_SES  3.31823    1.40287   2.365 0.018043 *  
## School6074:C_SES  1.52909    1.30292   1.174 0.240603    
## School4420:C_SES  2.95866    1.58878   1.862 0.062614 .  
## School1906:C_SES  2.14551    1.36955   1.567 0.117259    
## School3992:C_SES  0.53788    1.38802   0.388 0.698389    
## School3999:C_SES  3.56698    0.98836   3.609 0.000310 ***
## School4173:C_SES  3.36567    1.45956   2.306 0.021143 *  
## School4325:C_SES  2.75605    1.03273   2.669 0.007632 ** 
## School5761:C_SES  3.10801    1.19136   2.609 0.009106 ** 
## School6484:C_SES  0.60568    1.49351   0.406 0.685093    
## School6897:C_SES  3.58049    1.17477   3.048 0.002314 ** 
## School7635:C_SES  2.44847    1.26927   1.929 0.053767 .  
## School7734:C_SES  6.03523    1.48469   4.065 4.86e-05 ***
## School8175:C_SES  1.61237    1.54334   1.045 0.296186    
## School8874:C_SES  4.09630    1.43512   2.854 0.004326 ** 
## School9225:C_SES  2.88589    1.39642   2.067 0.038806 *  
## School2458:C_SES  2.95669    1.22988   2.404 0.016241 *  
## School3610:C_SES  2.95585    1.20868   2.446 0.014489 *  
## School5640:C_SES  3.82774    1.38890   2.756 0.005868 ** 
## School3838:C_SES  0.59790    1.23391   0.485 0.628005    
## School9359:C_SES -0.83348    1.46679  -0.568 0.569895    
## School2208:C_SES  2.63664    1.31898   1.999 0.045648 *  
## School6089:C_SES  1.69245    1.51926   1.114 0.265318    
## School1477:C_SES  1.23061    1.14871   1.071 0.284075    
## School2768:C_SES  3.51228    1.37517   2.554 0.010668 *  
## School3039:C_SES  2.95567    1.92045   1.539 0.123839    
## School5819:C_SES  1.97252    1.43955   1.370 0.170658    
## School6397:C_SES  2.75901    1.03849   2.657 0.007908 ** 
## School1308:C_SES  0.12602    2.89741   0.043 0.965308    
## School1433:C_SES  1.85429    1.74798   1.061 0.288809    
## School1436:C_SES  1.60056    1.61653   0.990 0.322150    
## School1461:C_SES  6.26650    1.54684   4.051 5.15e-05 ***
## School1637:C_SES  3.11681    1.56230   1.995 0.046081 *  
## School1942:C_SES  0.08938    2.17762   0.041 0.967260    
## School1946:C_SES  3.58583    1.40776   2.547 0.010881 *  
## School2336:C_SES  1.90497    1.39610   1.364 0.172457    
## School2526:C_SES  0.15950    1.32609   0.120 0.904264    
## School2626:C_SES  4.09968    1.77861   2.305 0.021197 *  
## School2755:C_SES  0.56050    1.41945   0.395 0.692950    
## School2771:C_SES  4.26819    1.60528   2.659 0.007859 ** 
## School2990:C_SES  1.32454    1.32327   1.001 0.316883    
## School3020:C_SES  1.65368    1.21797   1.358 0.174595    
## School3152:C_SES  2.76825    1.00158   2.764 0.005727 ** 
## School3332:C_SES  2.03095    1.71772   1.182 0.237106    
## School3351:C_SES  2.45504    1.16971   2.099 0.035867 *  
## School3427:C_SES -0.48817    1.31793  -0.370 0.711094    
## School3657:C_SES  3.73591    1.10047   3.395 0.000691 ***
## School4642:C_SES  3.27239    1.17344   2.789 0.005306 ** 
## School5404:C_SES  1.21423    1.60712   0.756 0.449955    
## School5619:C_SES  5.25753    1.25841   4.178 2.98e-05 ***
## School6366:C_SES  1.51752    1.21527   1.249 0.211812    
## School6469:C_SES  1.75529    1.29272   1.358 0.174562    
## School7011:C_SES  5.07465    1.72585   2.940 0.003289 ** 
## School7276:C_SES  3.77336    1.06358   3.548 0.000391 ***
## School7332:C_SES  2.46320    1.32282   1.862 0.062634 .  
## School7345:C_SES  4.21192    0.98954   4.256 2.10e-05 ***
## School7688:C_SES  0.11634    1.47469   0.079 0.937119    
## School7697:C_SES  3.13622    1.77439   1.767 0.077190 .  
## School8193:C_SES  2.33521    1.62482   1.437 0.150704    
## School8202:C_SES  3.70590    1.47606   2.511 0.012073 *  
## School8627:C_SES  1.86956    1.18737   1.575 0.115408    
## School8628:C_SES  1.23139    1.34892   0.913 0.361339    
## School9198:C_SES  2.61055    1.69902   1.537 0.124462    
## School9586:C_SES  1.67208    1.33730   1.250 0.211217    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.06 on 6865 degrees of freedom
## Multiple R-squared:  0.8328, Adjusted R-squared:  0.825 
## F-statistic: 106.8 on 320 and 6865 DF,  p-value: < 2.2e-16
##        b0        b1 
## 12.620755  2.201641
##       b0       b1 
## 3.117651 1.630998
##            b0         b1
## b0 1.00000000 0.01346686
## b1 0.01346686 1.00000000
## `geom_smooth()` using formula 'y ~ x'

## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ C_SES + (1 | School)
##    Data: dta
## 
## REML criterion at convergence: 46724
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0969 -0.7322  0.0194  0.7572  2.9147 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept)  8.672   2.945   
##  Residual             37.010   6.084   
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.6361     0.2445   51.68
## C_SES         2.1912     0.1087   20.17
## 
## Correlation of Fixed Effects:
##       (Intr)
## C_SES 0.000
  Math Math
Predictors Estimates std. Error Estimates std. Error
(Intercept) 12.64 0.24 12.64 0.24
C_SES 2.19 0.11
Random Effects
σ2 39.15 37.01
τ00 8.61 School 8.67 School
ICC 0.18 0.19

The estimated overall mean math score is 12.64.

For one point increase in C_SES, Math score drops by 0.46 point, on average.

About 5% (= 2.14/39.15) of variance in Math scores can be attributed to differences in C_SES scores among student attending different schools.

## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ C_SES + (C_SES | School)
##    Data: dta
## 
## REML criterion at convergence: 46714.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09680 -0.73193  0.01855  0.75386  2.89924 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  School   (Intercept)  8.681   2.9464       
##           C_SES        0.694   0.8331   0.02
##  Residual             36.700   6.0581       
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.6362     0.2445   51.68
## C_SES         2.1932     0.1283   17.10
## 
## Correlation of Fixed Effects:
##       (Intr)
## C_SES 0.009
## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ C_SES + (1 | School) + (C_SES - 1 | School)
##    Data: dta
## 
## REML criterion at convergence: 46714.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.09607 -0.73095  0.01694  0.75391  2.90167 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept)  8.6807  2.9463  
##  School.1 C_SES        0.6941  0.8331  
##  Residual             36.7002  6.0581  
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.6360     0.2445   51.68
## C_SES         2.1926     0.1283   17.09
## 
## Correlation of Fixed Effects:
##       (Intr)
## C_SES 0.000

## refitting model(s) with ML (instead of REML)
## Data: dta
## Models:
## m3a: Math ~ C_SES + (1 | School)
## m3c: Math ~ C_SES + (1 | School) + (C_SES - 1 | School)
## m3b: Math ~ C_SES + (C_SES | School)
##     Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)   
## m3a  4 46728 46756 -23360    46720                            
## m3c  5 46721 46755 -23356    46711 9.4196      1   0.002147 **
## m3b  6 46723 46764 -23356    46711 0.0134      1   0.907954   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Computing bootstrap confidence intervals ...
## 
## 3 message(s): boundary (singular) fit: see ?isSingular
## 35 warning(s): Model failed to converge with max|grad| = 0.00200754 (tol = 0.002, component 1) (and others)
##                  2.5 %    97.5 %
## .sig01       2.6100478  3.269887
## .sig02       0.3848016  1.141914
## .sigma       5.9425498  6.150370
## (Intercept) 12.1304752 13.088948
## C_SES        1.9525499  2.439487

4 model 4

## `geom_smooth()` using formula 'y ~ x'

## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ Ave_SES + Sector + C_SES + Ave_SES:C_SES + Sector:C_SES +  
##     (C_SES | School)
##    Data: dta
## 
## REML criterion at convergence: 46503.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.15926 -0.72319  0.01704  0.75444  2.95822 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  School   (Intercept)  2.380   1.5426       
##           C_SES        0.101   0.3179   0.39
##  Residual             36.721   6.0598       
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)           12.1279     0.1993  60.856
## Ave_SES                5.3329     0.3692  14.446
## SectorCatholic         1.2266     0.3063   4.005
## C_SES                  2.9450     0.1556  18.928
## Ave_SES:C_SES          1.0393     0.2989   3.477
## SectorCatholic:C_SES  -1.6427     0.2398  -6.851
## 
## Correlation of Fixed Effects:
##             (Intr) Av_SES SctrCt C_SES  A_SES:
## Ave_SES      0.256                            
## SectorCthlc -0.699 -0.356                     
## C_SES        0.075  0.019 -0.053              
## A_SES:C_SES  0.019  0.074 -0.026  0.293       
## SctrC:C_SES -0.052 -0.027  0.077 -0.696 -0.351
## Linear mixed model fit by REML ['lmerMod']
## Formula: Math ~ Ave_SES + Sector + C_SES + Ave_SES:C_SES + Sector:C_SES +  
##     (1 | School)
##    Data: dta
## 
## REML criterion at convergence: 46504.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1701 -0.7249  0.0148  0.7542  2.9655 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept)  2.375   1.541   
##  Residual             36.766   6.064   
## Number of obs: 7185, groups:  School, 160
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)           12.1282     0.1992  60.885
## Ave_SES                5.3367     0.3690  14.463
## SectorCatholic         1.2245     0.3061   4.000
## C_SES                  2.9421     0.1512  19.457
## Ave_SES:C_SES          1.0444     0.2910   3.589
## SectorCatholic:C_SES  -1.6422     0.2331  -7.045
## 
## Correlation of Fixed Effects:
##             (Intr) Av_SES SctrCt C_SES  A_SES:
## Ave_SES      0.256                            
## SectorCthlc -0.699 -0.356                     
## C_SES        0.000  0.000  0.000              
## A_SES:C_SES  0.000  0.000  0.000  0.295       
## SctrC:C_SES  0.000  0.000  0.000 -0.696 -0.351
  Math Math
Predictors Estimates std. Error Estimates std. Error
(Intercept) 12.13 0.20 12.13 0.20
Ave_SES 5.33 0.37 5.34 0.37
Sector [Catholic] 1.23 0.31 1.22 0.31
C_SES 2.95 0.16 2.94 0.15
Ave_SES * C_SES 1.04 0.30 1.04 0.29
Sector [Catholic] * C_SES -1.64 0.24 -1.64 0.23
Random Effects
σ2 36.72 36.77
τ00 2.38 School 2.38 School
τ11 0.10 School.C_SES  
ρ01 0.39 School  
ICC 0.06 0.06
## refitting model(s) with ML (instead of REML)
## Data: dta
## Models:
## m4b: Math ~ Ave_SES + Sector + C_SES + Ave_SES:C_SES + Sector:C_SES + 
## m4b:     (1 | School)
## m4a: Math ~ Ave_SES + Sector + C_SES + Ave_SES:C_SES + Sector:C_SES + 
## m4a:     (C_SES | School)
##     Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
## m4b  8 46513 46568 -23249    46497                         
## m4a 10 46516 46585 -23248    46496 1.0016      2     0.6061

## Loading required package: arm
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## arm (Version 1.10-1, built: 2018-4-12)
## Working directory is D:/sheu
## Registered S3 methods overwritten by 'broom.mixed':
##   method         from 
##   augment.lme    broom
##   augment.merMod broom
##   glance.lme     broom
##   glance.merMod  broom
##   glance.stanreg broom
##   tidy.brmsfit   broom
##   tidy.gamlss    broom
##   tidy.lme       broom
##   tidy.merMod    broom
##   tidy.rjags     broom
##   tidy.stanfit   broom
##   tidy.stanreg   broom
## lmer(formula = Math ~ Ave_SES + Sector + C_SES + Ave_SES:C_SES + 
##     Sector:C_SES + (1 | School), data = dta)
##                      coef.est coef.se
## (Intercept)          12.13     0.20  
## Ave_SES               5.34     0.37  
## SectorCatholic        1.22     0.31  
## C_SES                 2.94     0.15  
## Ave_SES:C_SES         1.04     0.29  
## SectorCatholic:C_SES -1.64     0.23  
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  School   (Intercept) 1.54    
##  Residual             6.06    
## ---
## number of obs: 7185, groups: School, 160
## AIC = 46520.8