Data
pacman::p_load(mlmRev, tidyverse, lme4, nlme)
dta <- read.table("C:/Users/ASUS/Desktop/data/iq_language.txt", header = T)
head(dta)
## School Pupil IQ Language Group_size IQ_c School_mean Group_mean
## 1 1 17001 15.0 46 29 3.1659379 -1.51406 5.9
## 2 1 17002 14.5 45 29 2.6659379 -1.51406 5.9
## 3 1 17003 9.5 33 29 -2.3340621 -1.51406 5.9
## 4 1 17004 11.0 46 29 -0.8340621 -1.51406 5.9
## 5 1 17005 8.0 20 29 -3.8340621 -1.51406 5.9
## 6 1 17006 9.5 30 29 -2.3340621 -1.51406 5.9
## SES_c
## 1 -4.811981
## 2 -17.811981
## 3 -12.811981
## 4 -4.811981
## 5 -17.811981
## 6 -17.811981
Model
M1
summary(m1 <- lmer(Language ~ (1|School), data = dta))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Language ~ (1 | School)
## Data: dta
##
## REML criterion at convergence: 16253.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.11618 -0.65703 0.07597 0.74128 2.50639
##
## Random effects:
## Groups Name Variance Std.Dev.
## School (Intercept) 19.63 4.431
## Residual 64.56 8.035
## Number of obs: 2287, groups: School, 131
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 40.3624 0.4282 94.26
library(ICC)
M2
summary(m2<- lmer(Language ~ IQ_c + (1|School), data = dta))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Language ~ IQ_c + (1 | School)
## Data: dta
##
## REML criterion at convergence: 15255.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0939 -0.6375 0.0579 0.7061 3.1448
##
## Random effects:
## Groups Name Variance Std.Dev.
## School (Intercept) 9.602 3.099
## Residual 42.245 6.500
## Number of obs: 2287, groups: School, 131
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 40.60823 0.30819 131.8
## IQ_c 2.48759 0.07008 35.5
##
## Correlation of Fixed Effects:
## (Intr)
## IQ_c 0.018
Compare M1 with M2
sjPlot::tab_model(m1, m2, show.p=FALSE, show.r2=FALSE, show.obs=FALSE, show.ngroups=FALSE, show.se=TRUE, show.ci=FALSE)
|
|
Language
|
Language
|
|
Predictors
|
Estimates
|
std. Error
|
Estimates
|
std. Error
|
|
(Intercept)
|
40.36
|
0.43
|
40.61
|
0.31
|
|
IQ_c
|
|
|
2.49
|
0.07
|
|
Random Effects
|
|
σ2
|
64.56
|
42.24
|
|
τ00
|
19.63 School
|
9.60 School
|
|
ICC
|
0.23
|
0.19
|
# (0.23-0.19)/0.23= 0.17, which means adding IQ_c in M2 model increase the explained variance by 17% (??)