1 data input

# load package
pacman::p_load(mlmRev, tidyverse, lme4, nlme)
# input data
dta1 <- read.table("demo1.txt", header = T)
dta2 <- read.table("demo2.txt", header = T)

2 grand mean and sd

# grand mean
summary(dta1$Score)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   11.00   51.00   55.00   62.11   93.00   97.00
summary(dta2$Score)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   11.00   51.00   53.00   57.44   91.00   97.00
# sd for overall Math scores
sd(dta1$Score)
## [1] 34.2215
sd(dta2$Score)
## [1] 32.29207

dta1所有學校平均分數為62.11標準差34.22

dta2所有學校平均分數為57.44標準差32.29

3 model

summary(m0_1 <- lmer(Score ~ (1|School), data = dta1))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ (1 | School)
##    Data: dta1
## 
## REML criterion at convergence: 51.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3280 -0.4745  0.0000  0.4608  1.3553 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept) 1679     40.976  
##  Residual                5      2.236  
## Number of obs: 9, groups:  School, 3
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)    53.01      23.67    2.24
summary(m0_2 <- lmer(Score ~ (1|School), data = dta2))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ (1 | School)
##    Data: dta2
## 
## REML criterion at convergence: 80.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.36734 -0.34286 -0.02776  1.07153  1.13999 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  School   (Intercept) 104.2    10.21   
##  Residual             967.8    31.11   
## Number of obs: 9, groups:  School, 3
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)    56.36      12.01   4.692
sjPlot::tab_model(m0_1, m0_2, show.p=FALSE, show.r2=FALSE, show.obs=FALSE, show.ngroups=FALSE, show.se=TRUE, show.ci=FALSE)
  Score Score
Predictors Estimates std. Error Estimates std. Error
(Intercept) 53.01 23.67 56.36 12.01
Random Effects
σ2 5.00 967.76
τ00 1679.06 School 104.17 School
ICC 1.00 0.10

dta1:
The estimated mean of scores for all children is 53.01 with as SD of (5+1679.06)^1/2. The correlation between scores of pupil attending the same school is 1.00

dta2:
The estimated mean of scores for all children is 56.36 with as SD of (967.76+104.17)^1/2. The correlation between scores of pupil attending the same school is 0.10

4 conclusion

整體而言dta1與dta2學生分數相似,但可以觀察到dta1在同一個學校內的學生分數相近,但dta2則是在同一個學校內的學生分數差異很大。因此,在random effect分析結果表也呈現,dta1學校層級解釋了學生分數大多數的變異量,個人間的變異則很小。dta2則相反,學生分數間差異大,學校間的效果反而小。