Notch Analysis

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7382 -14391.94 28829.87 5006(30186) 5.18e-03 1.0e+04
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.397    1.182   
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.28684    0.16737
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.09069    0.14829
## bs(novel_locations, knots = c(1, 26), degree = 1)3           3.37253    0.54039
## lockdown                                                    -0.81185    0.15026
## dowMonday                                                   -0.19465    0.07945
## dowSaturday                                                  0.33461    0.08259
## dowSunday                                                    0.09388    0.08210
## dowThursday                                                 -0.24270    0.07837
## dowTuesday                                                  -0.46085    0.07796
## dowWednesday                                                -0.24776    0.08126
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.43648    0.19095
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.43881    0.17029
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -3.69524    1.47291
##                                                             z value Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -1.714  0.08657
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -0.612  0.54082
## bs(novel_locations, knots = c(1, 26), degree = 1)3            6.241 4.35e-10
## lockdown                                                     -5.403 6.56e-08
## dowMonday                                                    -2.450  0.01429
## dowSaturday                                                   4.051 5.09e-05
## dowSunday                                                     1.144  0.25283
## dowThursday                                                  -3.097  0.00196
## dowTuesday                                                   -5.912 3.39e-09
## dowWednesday                                                 -3.049  0.00230
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   2.286  0.02226
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.577  0.00997
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.509  0.01211
##                                                                
## bs(novel_locations, knots = c(1, 26), degree = 1)1          .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2             
## bs(novel_locations, knots = c(1, 26), degree = 1)3          ***
## lockdown                                                    ***
## dowMonday                                                   *  
## dowSaturday                                                 ***
## dowSunday                                                      
## dowThursday                                                 ** 
## dowTuesday                                                  ***
## dowWednesday                                                ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3292     0.1847 -23.442
## (10,20]|(20,30]   -3.4662     0.1782 -19.450
## (20,30]|(30,40]   -2.6004     0.1750 -14.863
## (30,40]|(40,50]   -1.7255     0.1734  -9.953
## (40,50]|(50,60]   -0.7625     0.1725  -4.419
## (50,60]|(60,70]    0.4840     0.1725   2.807
## (60,70]|(70,80]    1.4692     0.1735   8.470
## (70,80]|(80,90]    2.5643     0.1765  14.532
## (80,90]|(90,100]   3.9148     0.1870  20.930
## (21028 observations deleted due to missingness)
## [1] "BIC: "
## [1] 28988.73
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
## data:    df
## 
##  link  threshold nobs logLik    AIC      niter      max.grad cond.H 
##  logit flexible  7382 -14567.30 29182.60 1233(7391) 1.77e+02 4.5e+08
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                                Estimate
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.17831022
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.10468885
## bs(novel_locations, knots = c(1, 26), degree = 1)3           2.41204387
## lockdown                                                    -0.48938095
## dowMonday                                                   -0.16612770
## dowSaturday                                                  0.27945070
## dowSunday                                                    0.08900943
## dowThursday                                                 -0.20488716
## dowTuesday                                                  -0.38328974
## dowWednesday                                                -0.20464490
## distance                                                     0.00007873
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.22081878
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.18724667
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -3.79154643
##                                                              Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1           0.15976576  -1.116
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.14145970   0.740
## bs(novel_locations, knots = c(1, 26), degree = 1)3           0.52975363   4.553
## lockdown                                                     0.14350942  -3.410
## dowMonday                                                    0.07591957  -2.188
## dowSaturday                                                  0.07879961   3.546
## dowSunday                                                    0.07850137   1.134
## dowThursday                                                  0.07488905  -2.736
## dowTuesday                                                   0.07447546  -5.147
## dowWednesday                                                 0.07751360  -2.640
## distance                                                     0.00007247   1.086
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.18246775   1.210
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.16268072   1.151
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  1.42411548  -2.662
##                                                                Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1             0.264391    
## bs(novel_locations, knots = c(1, 26), degree = 1)2             0.459263    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.000005285 ***
## lockdown                                                       0.000649 ***
## dowMonday                                                      0.028655 *  
## dowSaturday                                                    0.000391 ***
## dowSunday                                                      0.256854    
## dowThursday                                                    0.006221 ** 
## dowTuesday                                                  0.000000265 ***
## dowWednesday                                                   0.008288 ** 
## distance                                                       0.277346    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    0.226210    
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    0.249729    
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    0.007759 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.5126     0.1709 -20.550
## (10,20]|(20,30]   -2.7310     0.1653 -16.524
## (20,30]|(30,40]   -1.9729     0.1626 -12.131
## (30,40]|(40,50]   -1.2345     0.1614  -7.646
## (40,50]|(50,60]   -0.4481     0.1609  -2.785
## (50,60]|(60,70]    0.5464     0.1609   3.396
## (60,70]|(70,80]    1.3249     0.1615   8.202
## (70,80]|(80,90]    2.2172     0.1636  13.549
## (80,90]|(90,100]   3.3481     0.1714  19.536
## (21028 observations deleted due to missingness)
## [1] "BIC: "
## [1] 29348.36

< 200 Novel Locations

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    df[which(df$novel_locations < 200), ]
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7241 -14083.28 28212.56 5446(33055) 1.05e-02 1.7e+03
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.416    1.19    
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.22612    0.16815
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.22330    0.15032
## bs(novel_locations, knots = c(1, 26), degree = 1)3           1.03635    0.18872
## lockdown                                                    -0.81279    0.15066
## dowMonday                                                   -0.18185    0.08037
## dowSaturday                                                  0.31917    0.08404
## dowSunday                                                    0.12511    0.08333
## dowThursday                                                 -0.19938    0.07946
## dowTuesday                                                  -0.41451    0.07892
## dowWednesday                                                -0.23830    0.08236
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.36511    0.19188
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.59945    0.17413
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -0.97119    0.35115
##                                                             z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -1.345
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -1.486
## bs(novel_locations, knots = c(1, 26), degree = 1)3            5.492
## lockdown                                                     -5.395
## dowMonday                                                    -2.263
## dowSaturday                                                   3.798
## dowSunday                                                     1.501
## dowThursday                                                  -2.509
## dowTuesday                                                   -5.253
## dowWednesday                                                 -2.894
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   1.903
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   3.443
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.766
##                                                                 Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1              0.178717    
## bs(novel_locations, knots = c(1, 26), degree = 1)2              0.137410    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.0000000398 ***
## lockdown                                                    0.0000000686 ***
## dowMonday                                                       0.023656 *  
## dowSaturday                                                     0.000146 ***
## dowSunday                                                       0.133270    
## dowThursday                                                     0.012097 *  
## dowTuesday                                                  0.0000001500 ***
## dowWednesday                                                    0.003810 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     0.057065 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     0.000576 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     0.005679 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3333     0.1859 -23.307
## (10,20]|(20,30]   -3.4605     0.1793 -19.299
## (20,30]|(30,40]   -2.5883     0.1760 -14.704
## (30,40]|(40,50]   -1.7121     0.1744  -9.816
## (40,50]|(50,60]   -0.7446     0.1736  -4.289
## (50,60]|(60,70]    0.5139     0.1735   2.961
## (60,70]|(70,80]    1.5038     0.1746   8.614
## (70,80]|(80,90]    2.6074     0.1777  14.671
## (80,90]|(90,100]   3.9963     0.1892  21.118
## (12914 observations deleted due to missingness)
## [1] "BIC: "
## [1] 28370.97
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
## data:    df[which(df$novel_locations < 200), ]
## 
##  link  threshold nobs logLik    AIC      niter      max.grad cond.H 
##  logit flexible  7241 -14259.13 28566.26 1258(8800) 2.58e+02 6.6e+07
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1        1       
## Number of groups:  subject 235 
## 
## Coefficients:
##                                                                Estimate
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.12584383
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.00382567
## bs(novel_locations, knots = c(1, 26), degree = 1)3           0.90940663
## lockdown                                                    -0.49251187
## dowMonday                                                   -0.15874695
## dowSaturday                                                  0.26880848
## dowSunday                                                    0.11211669
## dowThursday                                                 -0.16540066
## dowTuesday                                                  -0.34432167
## dowWednesday                                                -0.19356770
## distance                                                     0.00005569
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.15258546
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.35715781
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -1.33103298
##                                                              Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1           0.16025057  -0.785
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.14320954  -0.027
## bs(novel_locations, knots = c(1, 26), degree = 1)3           0.18285810   4.973
## lockdown                                                     0.14367589  -3.428
## dowMonday                                                    0.07672128  -2.069
## dowSaturday                                                  0.08012675   3.355
## dowSunday                                                    0.07964204   1.408
## dowThursday                                                  0.07587364  -2.180
## dowTuesday                                                   0.07534858  -4.570
## dowWednesday                                                 0.07851292  -2.465
## distance                                                     0.00007572   0.735
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.18311000   0.833
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.16611235   2.150
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  0.33580478  -3.964
##                                                                Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1             0.432281    
## bs(novel_locations, knots = c(1, 26), degree = 1)2             0.978688    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.000000658 ***
## lockdown                                                       0.000608 ***
## dowMonday                                                      0.038533 *  
## dowSaturday                                                    0.000794 ***
## dowSunday                                                      0.159203    
## dowThursday                                                    0.029261 *  
## dowTuesday                                                  0.000004884 ***
## dowWednesday                                                   0.013685 *  
## distance                                                       0.462066    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    0.404676    
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    0.031547 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 0.000073794 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -3.5124     0.1716 -20.470
## (10,20]|(20,30]   -2.7237     0.1658 -16.425
## (20,30]|(30,40]   -1.9618     0.1632 -12.023
## (30,40]|(40,50]   -1.2246     0.1620  -7.560
## (40,50]|(50,60]   -0.4369     0.1614  -2.707
## (50,60]|(60,70]    0.5654     0.1614   3.503
## (60,70]|(70,80]    1.3475     0.1622   8.309
## (70,80]|(80,90]    2.2467     0.1644  13.666
## (80,90]|(90,100]   3.4081     0.1728  19.720
## (12914 observations deleted due to missingness)
## [1] "BIC: "
## [1] 28731.56

< 100 KM

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
## data:    df[which(df$distance < 100), ]
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H
##  logit flexible  7007 -13577.13 27200.25 3734(21555) 2.45e+01 NaN   
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.484    1.218   
## Number of groups:  subject 234 
## 
## Coefficients:
##                                                             Estimate Std. Error
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -0.2218         NA
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -0.2370         NA
## bs(novel_locations, knots = c(1, 26), degree = 1)3            2.0545         NA
## lockdown                                                     -0.8190         NA
## dowMonday                                                    -0.1920         NA
## dowSaturday                                                   0.3332         NA
## dowSunday                                                     0.1283         NA
## dowThursday                                                  -0.2074         NA
## dowTuesday                                                   -0.3981         NA
## dowWednesday                                                 -0.2693         NA
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   0.3696         NA
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   0.6319         NA
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.2234         NA
##                                                             z value Pr(>|z|)
## bs(novel_locations, knots = c(1, 26), degree = 1)1               NA       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)2               NA       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)3               NA       NA
## lockdown                                                         NA       NA
## dowMonday                                                        NA       NA
## dowSaturday                                                      NA       NA
## dowSunday                                                        NA       NA
## dowThursday                                                      NA       NA
## dowTuesday                                                       NA       NA
## dowWednesday                                                     NA       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown      NA       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown      NA       NA
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown      NA       NA
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3888         NA      NA
## (10,20]|(20,30]   -3.4927         NA      NA
## (20,30]|(30,40]   -2.6041         NA      NA
## (30,40]|(40,50]   -1.7190         NA      NA
## (40,50]|(50,60]   -0.7456         NA      NA
## (50,60]|(60,70]    0.5279         NA      NA
## (60,70]|(70,80]    1.5403         NA      NA
## (70,80]|(80,90]    2.6590         NA      NA
## (80,90]|(90,100]   4.0529         NA      NA
## (13899 observations deleted due to missingness)
## [1] "BIC: "
## [1] 27357.91
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
## data:    df[which(df$distance < 100), ]
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7007 -13577.13 27202.26 3995(21252) 9.12e-02 4.3e+05
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.482    1.217   
## Number of groups:  subject 234 
## 
## Coefficients:
##                                                               Estimate
## bs(novel_locations, knots = c(1, 26), degree = 1)1          -0.2255064
## bs(novel_locations, knots = c(1, 26), degree = 1)2          -0.2412445
## bs(novel_locations, knots = c(1, 26), degree = 1)3           2.0718822
## lockdown                                                    -0.8248059
## dowMonday                                                   -0.1913897
## dowSaturday                                                  0.3348037
## dowSunday                                                    0.1286502
## dowThursday                                                 -0.2075564
## dowTuesday                                                  -0.3981668
## dowWednesday                                                -0.2686236
## distance                                                    -0.0001218
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.3753480
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.6375293
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown -2.1984363
##                                                             Std. Error z value
## bs(novel_locations, knots = c(1, 26), degree = 1)1           0.1688531  -1.336
## bs(novel_locations, knots = c(1, 26), degree = 1)2           0.1521086  -1.586
## bs(novel_locations, knots = c(1, 26), degree = 1)3           0.4880736   4.245
## lockdown                                                     0.1511686  -5.456
## dowMonday                                                    0.0816188  -2.345
## dowSaturday                                                  0.0860328   3.892
## dowSunday                                                    0.0854470   1.506
## dowThursday                                                  0.0805565  -2.577
## dowTuesday                                                   0.0802596  -4.961
## dowWednesday                                                 0.0836655  -3.211
## distance                                                     0.0023445  -0.052
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown  0.1926185   1.949
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown  0.1762922   3.616
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  0.6889188  -3.191
##                                                                 Pr(>|z|)    
## bs(novel_locations, knots = c(1, 26), degree = 1)1              0.181707    
## bs(novel_locations, knots = c(1, 26), degree = 1)2              0.112739    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.0000218574 ***
## lockdown                                                    0.0000000486 ***
## dowMonday                                                       0.019031 *  
## dowSaturday                                                 0.0000995931 ***
## dowSunday                                                       0.132166    
## dowThursday                                                     0.009980 ** 
## dowTuesday                                                  0.0000007014 ***
## dowWednesday                                                    0.001324 ** 
## distance                                                        0.958556    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     0.051336 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     0.000299 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     0.001417 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -4.3931     0.1882 -23.345
## (10,20]|(20,30]   -3.4965     0.1812 -19.297
## (20,30]|(30,40]   -2.6086     0.1778 -14.674
## (30,40]|(40,50]   -1.7233     0.1761  -9.784
## (40,50]|(50,60]   -0.7506     0.1753  -4.282
## (50,60]|(60,70]    0.5230     0.1752   2.985
## (60,70]|(70,80]    1.5355     0.1764   8.707
## (70,80]|(80,90]    2.6532     0.1798  14.758
## (80,90]|(90,100]   4.0472     0.1922  21.060
## (13899 observations deleted due to missingness)
## [1] "BIC: "
## [1] 27366.77

Z Novel Locations & < 100 KM

## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: PA_avg ~ bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
## data:    df[which(df$distance < 100), ]
## 
##  link  threshold nobs logLik    AIC      niter       max.grad cond.H 
##  logit flexible  7007 -13579.00 27202.00 3534(19102) 9.55e-01 2.0e+06
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  subject (Intercept) 1.471    1.213   
## Number of groups:  subject 234 
## 
## Coefficients:
##                                                                      Estimate
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          -2.2741782
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          -2.3715063
## lockdown                                                           -3.1557932
## dowMonday                                                          -0.1914637
## dowSaturday                                                         0.3326163
## dowSunday                                                           0.1261402
## dowThursday                                                        -0.2081317
## dowTuesday                                                         -0.4015307
## dowWednesday                                                       -0.2660219
## distance                                                           -0.0002249
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown  2.5271152
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown  3.0034922
##                                                                    Std. Error
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1           0.4664708
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2           0.4710131
## lockdown                                                            0.6710019
## dowMonday                                                           0.0815877
## dowSaturday                                                         0.0860251
## dowSunday                                                           0.0854347
## dowThursday                                                         0.0805520
## dowTuesday                                                          0.0802057
## dowWednesday                                                        0.0836313
## distance                                                            0.0023459
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown  0.6692953
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown  0.7213720
##                                                                    z value
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1           -4.875
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2           -5.035
## lockdown                                                            -4.703
## dowMonday                                                           -2.347
## dowSaturday                                                          3.867
## dowSunday                                                            1.476
## dowThursday                                                         -2.584
## dowTuesday                                                          -5.006
## dowWednesday                                                        -3.181
## distance                                                            -0.096
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown   3.776
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown   4.164
##                                                                       Pr(>|z|)
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          0.000001087
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          0.000000478
## lockdown                                                           0.000002562
## dowMonday                                                              0.01894
## dowSaturday                                                            0.00011
## dowSunday                                                              0.13982
## dowThursday                                                            0.00977
## dowTuesday                                                         0.000000555
## dowWednesday                                                           0.00147
## distance                                                               0.92362
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown     0.00016
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown 0.000031329
##                                                                       
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          ***
## lockdown                                                           ***
## dowMonday                                                          *  
## dowSaturday                                                        ***
## dowSunday                                                             
## dowThursday                                                        ** 
## dowTuesday                                                         ***
## dowWednesday                                                       ** 
## distance                                                              
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##                  Estimate Std. Error z value
## [0,10]|(10,20]    -6.5122     0.4790 -13.596
## (10,20]|(20,30]   -5.6165     0.4763 -11.792
## (20,30]|(30,40]   -4.7292     0.4748  -9.961
## (30,40]|(40,50]   -3.8442     0.4738  -8.113
## (40,50]|(50,60]   -2.8717     0.4732  -6.069
## (50,60]|(60,70]   -1.5986     0.4724  -3.384
## (60,70]|(70,80]   -0.5867     0.4721  -1.243
## (70,80]|(80,90]    0.5305     0.4729   1.122
## (80,90]|(90,100]   1.9239     0.4769   4.034
## (13899 observations deleted due to missingness)
## [1] "BIC: "
## [1] 27352.8