getwd(
)
## [1] "C:/Users/Jerome/Documents/From_Toshiba_HD_Work_Files/0000_Montgomery_College/Math_217/Week_6"
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.3     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## Warning: package 'tibble' was built under R version 4.0.2
## Warning: package 'tidyr' was built under R version 4.0.2
## Warning: package 'dplyr' was built under R version 4.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.2
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:purrr':
## 
##     cross
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
id <-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)
segment <-c(23,30,54,28,31,29,34,35,30,27,21,43,51,35,51,49,35,24,26,29,21,29,37,27,28,33,33,23,37,27,40,48,41,29,30,57)
dendritic <-data.frame(id,segment)
write.csv(dendritic, "dendritic.csv")
dendritic <- read.csv("dendritic.csv")
#idm <-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)
#segmentm <-c(23,30,54,28,31,29,34,35,30,27,21,43,51,35,51,49,35,24,26,29,21,29,37,27,28,33,33,23,37,27,40,48,41,29,30,57)
#dendriticm <- matrix(idm,segmentm)
#write.csv(dendriticm, "dendriticm.csv")
#dendriticm <-read.csv("dendriticm.csv")
stripchart(dendritic, method = "stack")

stripchart(dendritic$segment, method="stack")

ggplot(data=dendritic, aes(segment)) +
  geom_dotplot(dotsize = 1) +
  scale_y_continuous(NULL, breaks = NULL)
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

Use Mosaic

dotplot(dendritic$segment, main = "Dendritic Data Frequencies", xlab = "# Segments/Cell", cex =1.5, col = "red")

table(dendritic$segment)
## 
## 21 23 24 26 27 28 29 30 31 33 34 35 37 40 41 43 48 49 51 54 57 
##  2  2  1  1  3  2  4  3  1  2  1  3  2  1  1  1  1  1  2  1  1
summary(dendritic$segment)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   21.00   27.75   30.50   34.03   37.75   57.00
mean(dendritic$segment)
## [1] 34.02778
median(dendritic$segment)
## [1] 30.5
sd(dendritic$segment)
## [1] 9.616908
hist(dendritic$segment, main= "Dendritic Data Histogram", xlab = "# Segments/Cell")
avg <- mean(dendritic$segment)
med <- median(dendritic$segment)
abline(v = avg, col = "red")
abline(v = med, col = "blue")

boxplot (dendritic$segment, main = "Dendritic Data Boxplot", xlab = "# Segments/Cell", ylab = "# of Segments", col = "blue")

Problem 3.6.1

dbinom(3, 4, .75)
## [1] 0.421875
dbinom(4,4,.75)
## [1] 0.3164063
dbinom(0,4,.75) +dbinom(4,4,.75)
## [1] 0.3203125

Problem 3.6.3

dbinom(0,4,.44)
## [1] 0.09834496
dbinom(1,4,.44)
## [1] 0.3090842
dbinom(2,4,.44)
## [1] 0.3642778

3.6.7

.08*20
## [1] 1.6
sqrt(20*.8*.2)
## [1] 1.788854
20*.8*.2
## [1] 3.2
sqrt(3.2)
## [1] 1.788854
sqrt(20*.08*.92)
## [1] 1.21326

3.6.10 I gave up on this one.

dbinom(8,300000,.7)
## [1] 0

Chapter 4 Homework

4.3.1

pnorm(1.5)-pnorm(-1.5)
## [1] 0.8663856
1-pnorm(2.5)
## [1] 0.006209665
1-pnorm(3.5)
## [1] 0.0002326291
#for the last one, she got 0.0005 using 2[pnorm(3.5)] I got zero when i did that. But I got her answer on the HW. How?
1-pnorm(3.5) + pnorm(-3.5) 
## [1] 0.0004652582

4.3.2

qnorm(.9)
## [1] 1.281552
qnorm(.1)
## [1] -1.281552

4.3.1(a)

1-pnorm(159,155,27)
## [1] 0.4411129

4.3.9(g)

1-pnorm(132,155,27) -pnorm(159,155,27)
## [1] 0.2439648

4.3.11

qnorm(.8,155, 27)
## [1] 177.7238
qnorm(.2, 155, 27)
## [1] 132.2762

4.3.17(b)

qnorm(.6,245,40)
## [1] 255.1339

4.s.16(c)

pnorm(15,7.3,11.1) - pnorm(5,7.3,11.1)
## [1] 0.3381388

Chapter 5

5.2.13

1-pnorm(40,35,4)
## [1] 0.1056498
1-pnorm(40,35,2.3094)
## [1] 0.01519137

5.2.19

1-pnorm(36,38,1.8)
## [1] 0.8667397
1-pnorm (41,38,1.8)
## [1] 0.04779035

5.4.3

qnorm(.44,)
## [1] -0.1509692