Notch Analysis

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 63450.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8328 -0.5475  0.0490  0.6050  4.1275 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 109.6    10.47   
##  Residual             294.1    17.15   
## Number of obs: 7382, groups:  subject, 235
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   56.1200
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.8433
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -1.4818
## bs(novel_locations, knots = c(1, 26), degree = 1)3            28.9354
## lockdown                                                      -8.6569
## dowMonday                                                     -1.7550
## dowSaturday                                                    3.2567
## dowSunday                                                      0.9703
## dowThursday                                                   -2.3045
## dowTuesday                                                    -4.2088
## dowWednesday                                                  -2.1026
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.8989
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    4.6083
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -29.8109
##                                                             Std. Error
## (Intercept)                                                     1.6783
## bs(novel_locations, knots = c(1, 26), degree = 1)1              1.6630
## bs(novel_locations, knots = c(1, 26), degree = 1)2              1.4808
## bs(novel_locations, knots = c(1, 26), degree = 1)3              4.7993
## lockdown                                                        1.5039
## dowMonday                                                       0.7734
## dowSaturday                                                     0.8002
## dowSunday                                                       0.7963
## dowThursday                                                     0.7631
## dowTuesday                                                      0.7587
## dowWednesday                                                    0.7832
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     1.8941
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     1.6944
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    14.3783
##                                                                    df t value
## (Intercept)                                                 4072.3370  33.438
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7247.6707  -2.311
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7262.9651  -1.001
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7206.9100   6.029
## lockdown                                                    7222.3152  -5.756
## dowMonday                                                   7148.9312  -2.269
## dowSaturday                                                 7152.1726   4.070
## dowSunday                                                   7151.9158   1.219
## dowThursday                                                 7151.0322  -3.020
## dowTuesday                                                  7149.7617  -5.548
## dowWednesday                                                7149.6989  -2.685
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7212.7611   2.586
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7216.7322   2.720
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7197.7169  -2.073
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1                0.02086 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2                0.31700    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00000000173 ***
## lockdown                                                    0.00000000895 ***
## dowMonday                                                         0.02329 *  
## dowSaturday                                                 0.00004749561 ***
## dowSunday                                                         0.22307    
## dowThursday                                                       0.00254 ** 
## dowTuesday                                                  0.00000002998 ***
## dowWednesday                                                      0.00728 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown       0.00972 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown       0.00655 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown       0.03818 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 63592.66
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 63461
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8283 -0.5519  0.0485  0.6065  4.1269 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 109.7    10.47   
##  Residual             294.0    17.15   
## Number of obs: 7382, groups:  subject, 235
## 
## Fixed effects:
##                                                                 Estimate
## (Intercept)                                                   56.1385628
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.8204452
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -1.4926529
## bs(novel_locations, knots = c(1, 26), degree = 1)3            26.8601452
## lockdown                                                      -8.6596548
## dowMonday                                                     -1.7673019
## dowSaturday                                                    3.2478078
## dowSunday                                                      0.9081246
## dowThursday                                                   -2.3154719
## dowTuesday                                                    -4.2293843
## dowWednesday                                                  -2.1171711
## distance                                                       0.0009558
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.8827760
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    4.6050751
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -28.5631507
##                                                               Std. Error
## (Intercept)                                                    1.6783769
## bs(novel_locations, knots = c(1, 26), degree = 1)1             1.6630397
## bs(novel_locations, knots = c(1, 26), degree = 1)2             1.4807384
## bs(novel_locations, knots = c(1, 26), degree = 1)3             5.0554500
## lockdown                                                       1.5038088
## dowMonday                                                      0.7734596
## dowSaturday                                                    0.8001392
## dowSunday                                                      0.7977146
## dowThursday                                                    0.7631305
## dowTuesday                                                     0.7587760
## dowWednesday                                                   0.7832346
## distance                                                       0.0007321
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    1.8939958
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    1.6943383
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   14.4092494
##                                                                       df
## (Intercept)                                                 4070.8744810
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7246.8856536
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7261.8608454
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7211.5825391
## lockdown                                                    7221.2566826
## dowMonday                                                   7147.9419275
## dowSaturday                                                 7151.1286147
## dowSunday                                                   7150.9318312
## dowThursday                                                 7149.9932175
## dowTuesday                                                  7148.7192204
## dowWednesday                                                7148.7080112
## distance                                                    7194.1323328
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7211.8431538
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7215.6986417
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7197.3168003
##                                                             t value
## (Intercept)                                                  33.448
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -2.297
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -1.008
## bs(novel_locations, knots = c(1, 26), degree = 1)3            5.313
## lockdown                                                     -5.758
## dowMonday                                                    -2.285
## dowSaturday                                                   4.059
## dowSunday                                                     1.138
## dowThursday                                                  -3.034
## dowTuesday                                                   -5.574
## dowWednesday                                                 -2.703
## distance                                                      1.306
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   2.578
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   2.718
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -1.982
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1                0.02163 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2                0.31347    
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00000011100 ***
## lockdown                                                    0.00000000884 ***
## dowMonday                                                         0.02235 *  
## dowSaturday                                                 0.00004979724 ***
## dowSunday                                                         0.25499    
## dowThursday                                                       0.00242 ** 
## dowTuesday                                                  0.00000002581 ***
## dowWednesday                                                      0.00689 ** 
## distance                                                          0.19174    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown       0.00996 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown       0.00659 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown       0.04749 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## [1] "BIC: "
## [1] 63612.46

< 200 Novel Locations

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df[which(df$novel_locations < 200), ]
## 
## REML criterion at convergence: 62156.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9764 -0.5550  0.0462  0.6085  4.0999 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 110.2    10.50   
##  Residual             290.1    17.03   
## Number of obs: 7241, groups:  subject, 235
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   55.8625
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.1899
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -2.9133
## bs(novel_locations, knots = c(1, 26), degree = 1)3             9.3741
## lockdown                                                      -8.6058
## dowMonday                                                     -1.5849
## dowSaturday                                                    3.1259
## dowSunday                                                      1.1948
## dowThursday                                                   -1.7855
## dowTuesday                                                    -3.6385
## dowWednesday                                                  -1.9768
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.0940
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.3270
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   -8.8408
##                                                             Std. Error
## (Intercept)                                                     1.6734
## bs(novel_locations, knots = c(1, 26), degree = 1)1              1.6557
## bs(novel_locations, knots = c(1, 26), degree = 1)2              1.4885
## bs(novel_locations, knots = c(1, 26), degree = 1)3              1.8372
## lockdown                                                        1.4942
## dowMonday                                                       0.7759
## dowSaturday                                                     0.8082
## dowSunday                                                       0.8021
## dowThursday                                                     0.7679
## dowTuesday                                                      0.7626
## dowWednesday                                                    0.7874
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     1.8862
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     1.7140
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     3.2609
##                                                                    df t value
## (Intercept)                                                 3994.9099  33.382
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7103.9185  -1.927
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7119.0861  -1.957
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7116.8165   5.102
## lockdown                                                    7079.3519  -5.760
## dowMonday                                                   7009.8556  -2.043
## dowSaturday                                                 7012.7342   3.868
## dowSunday                                                   7013.0914   1.490
## dowThursday                                                 7012.0766  -2.325
## dowTuesday                                                  7011.1001  -4.771
## dowWednesday                                                7010.7446  -2.510
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7070.4921   2.170
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7074.7637   3.691
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7081.6569  -2.711
##                                                                  Pr(>|t|)    
## (Intercept)                                                       < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1               0.054066 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2               0.050369 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.00000034408 ***
## lockdown                                                    0.00000000879 ***
## dowMonday                                                        0.041119 *  
## dowSaturday                                                      0.000111 ***
## dowSunday                                                        0.136384    
## dowThursday                                                      0.020092 *  
## dowTuesday                                                  0.00000186767 ***
## dowWednesday                                                     0.012079 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown      0.030003 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown      0.000225 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown      0.006720 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 62298.61
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df[which(df$novel_locations < 200), ]
## 
## REML criterion at convergence: 62168.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9719 -0.5553  0.0468  0.6092  4.0994 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 110.2    10.50   
##  Residual             290.1    17.03   
## Number of obs: 7241, groups:  subject, 235
## 
## Fixed effects:
##                                                                 Estimate
## (Intercept)                                                   55.8777510
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.1799493
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -2.9109147
## bs(novel_locations, knots = c(1, 26), degree = 1)3             9.0664711
## lockdown                                                      -8.6083378
## dowMonday                                                     -1.5955620
## dowSaturday                                                    3.1210858
## dowSunday                                                      1.1481721
## dowThursday                                                   -1.7909216
## dowTuesday                                                    -3.6561155
## dowWednesday                                                  -1.9871029
## distance                                                       0.0006729
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.0891823
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.3127796
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown   -8.6372695
##                                                               Std. Error
## (Intercept)                                                    1.6735204
## bs(novel_locations, knots = c(1, 26), degree = 1)1             1.6557421
## bs(novel_locations, knots = c(1, 26), degree = 1)2             1.4885640
## bs(novel_locations, knots = c(1, 26), degree = 1)3             1.8702897
## lockdown                                                       1.4941974
## dowMonday                                                      0.7759800
## dowSaturday                                                    0.8082634
## dowSunday                                                      0.8038924
## dowThursday                                                    0.7679551
## dowTuesday                                                     0.7628653
## dowWednesday                                                   0.7875212
## distance                                                       0.0007660
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    1.8862345
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    1.7140642
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    3.2691288
##                                                                       df
## (Intercept)                                                 3995.4089687
## bs(novel_locations, knots = c(1, 26), degree = 1)1          7103.0746074
## bs(novel_locations, knots = c(1, 26), degree = 1)2          7118.0952033
## bs(novel_locations, knots = c(1, 26), degree = 1)3          7117.3639308
## lockdown                                                    7078.3407482
## dowMonday                                                   7008.8938921
## dowSaturday                                                 7011.7023527
## dowSunday                                                   7012.2069745
## dowThursday                                                 7011.0661048
## dowTuesday                                                  7010.1096929
## dowWednesday                                                7009.7866839
## distance                                                    7050.3980760
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 7069.5353551
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 7073.8921223
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 7081.2685747
##                                                             t value
## (Intercept)                                                  33.389
## bs(novel_locations, knots = c(1, 26), degree = 1)1           -1.921
## bs(novel_locations, knots = c(1, 26), degree = 1)2           -1.956
## bs(novel_locations, knots = c(1, 26), degree = 1)3            4.848
## lockdown                                                     -5.761
## dowMonday                                                    -2.056
## dowSaturday                                                   3.861
## dowSunday                                                     1.428
## dowThursday                                                  -2.332
## dowTuesday                                                   -4.793
## dowWednesday                                                 -2.523
## distance                                                      0.879
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown   2.168
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown   3.683
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -2.642
##                                                                 Pr(>|t|)    
## (Intercept)                                                      < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1              0.054827 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2              0.050561 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.0000012759 ***
## lockdown                                                    0.0000000087 ***
## dowMonday                                                       0.039801 *  
## dowSaturday                                                     0.000114 ***
## dowSunday                                                       0.153260    
## dowThursday                                                     0.019725 *  
## dowTuesday                                                  0.0000016802 ***
## dowWednesday                                                    0.011650 *  
## distance                                                        0.379692    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     0.030199 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     0.000232 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     0.008258 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## [1] "BIC: "
## [1] 62319.24

< 100 KM

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 60024.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0860 -0.5554  0.0452  0.6093  4.1483 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 113.1    10.63   
##  Residual             284.4    16.86   
## Number of obs: 7007, groups:  subject, 234
## 
## Fixed effects:
##                                                              Estimate
## (Intercept)                                                   55.8078
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.1837
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -3.0114
## bs(novel_locations, knots = c(1, 26), degree = 1)3            18.2851
## lockdown                                                      -8.6289
## dowMonday                                                     -1.6388
## dowSaturday                                                    3.2729
## dowSunday                                                      1.1888
## dowThursday                                                   -1.7975
## dowTuesday                                                    -3.4517
## dowWednesday                                                  -2.1801
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.1519
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.6084
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -20.5503
##                                                             Std. Error
## (Intercept)                                                     1.6681
## bs(novel_locations, knots = c(1, 26), degree = 1)1              1.6414
## bs(novel_locations, knots = c(1, 26), degree = 1)2              1.4780
## bs(novel_locations, knots = c(1, 26), degree = 1)3              2.8641
## lockdown                                                        1.4802
## dowMonday                                                       0.7793
## dowSaturday                                                     0.8186
## dowSunday                                                       0.8124
## dowThursday                                                     0.7709
## dowTuesday                                                      0.7669
## dowWednesday                                                    0.7912
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown     1.8694
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown     1.7094
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown     6.5159
##                                                                    df t value
## (Intercept)                                                 3810.6571  33.457
## bs(novel_locations, knots = c(1, 26), degree = 1)1          6866.6438  -1.940
## bs(novel_locations, knots = c(1, 26), degree = 1)2          6881.3954  -2.037
## bs(novel_locations, knots = c(1, 26), degree = 1)3          6874.9383   6.384
## lockdown                                                    6841.5832  -5.830
## dowMonday                                                   6776.2806  -2.103
## dowSaturday                                                 6779.1526   3.998
## dowSunday                                                   6777.9040   1.463
## dowThursday                                                 6777.3188  -2.332
## dowTuesday                                                  6776.6163  -4.501
## dowWednesday                                                6776.3677  -2.756
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 6833.7065   2.221
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 6838.9594   3.866
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 6847.3790  -3.154
##                                                             Pr(>|t|)    
## (Intercept)                                                  < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1          0.052466 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2          0.041643 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          1.83e-10 ***
## lockdown                                                    5.81e-09 ***
## dowMonday                                                   0.035497 *  
## dowSaturday                                                 6.45e-05 ***
## dowSunday                                                   0.143447    
## dowThursday                                                 0.019747 *  
## dowTuesday                                                  6.88e-06 ***
## dowWednesday                                                0.005875 ** 
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 0.026386 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 0.000112 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 0.001618 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 60166.35
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 26), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 60030.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0795 -0.5552  0.0441  0.6104  4.1491 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 113.2    10.64   
##  Residual             284.4    16.86   
## Number of obs: 7007, groups:  subject, 234
## 
## Fixed effects:
##                                                                Estimate
## (Intercept)                                                   55.797732
## bs(novel_locations, knots = c(1, 26), degree = 1)1            -3.172395
## bs(novel_locations, knots = c(1, 26), degree = 1)2            -2.947063
## bs(novel_locations, knots = c(1, 26), degree = 1)3            19.690438
## lockdown                                                      -8.621966
## dowMonday                                                     -1.642496
## dowSaturday                                                    3.280757
## dowSunday                                                      1.204468
## dowThursday                                                   -1.803341
## dowTuesday                                                    -3.462153
## dowWednesday                                                  -2.185593
## distance                                                      -0.008595
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    4.138889
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    6.656774
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown  -20.433899
##                                                              Std. Error
## (Intercept)                                                    1.668424
## bs(novel_locations, knots = c(1, 26), degree = 1)1             1.641746
## bs(novel_locations, knots = c(1, 26), degree = 1)2             1.487115
## bs(novel_locations, knots = c(1, 26), degree = 1)3             4.571170
## lockdown                                                       1.480343
## dowMonday                                                      0.779354
## dowSaturday                                                    0.818872
## dowSunday                                                      0.813451
## dowThursday                                                    0.771100
## dowTuesday                                                     0.767366
## dowWednesday                                                   0.791328
## distance                                                       0.021789
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    1.869834
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    1.713853
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    6.522840
##                                                                      df t value
## (Intercept)                                                 3808.736103  33.443
## bs(novel_locations, knots = c(1, 26), degree = 1)1          6866.064509  -1.932
## bs(novel_locations, knots = c(1, 26), degree = 1)2          6883.991713  -1.982
## bs(novel_locations, knots = c(1, 26), degree = 1)3          6887.741374   4.308
## lockdown                                                    6840.705158  -5.824
## dowMonday                                                   6775.276692  -2.108
## dowSaturday                                                 6778.238093   4.006
## dowSunday                                                   6777.061773   1.481
## dowThursday                                                 6776.326452  -2.339
## dowTuesday                                                  6775.641723  -4.512
## dowWednesday                                                6775.387596  -2.762
## distance                                                    6894.356738  -0.394
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown 6832.977372   2.214
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown 6836.524811   3.884
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown 6846.733448  -3.133
##                                                                Pr(>|t|)    
## (Intercept)                                                     < 2e-16 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)1             0.053360 .  
## bs(novel_locations, knots = c(1, 26), degree = 1)2             0.047549 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)3          0.000016738 ***
## lockdown                                                    0.000000006 ***
## dowMonday                                                      0.035110 *  
## dowSaturday                                                 0.000062302 ***
## dowSunday                                                      0.138736    
## dowThursday                                                    0.019382 *  
## dowTuesday                                                  0.000006538 ***
## dowWednesday                                                   0.005762 ** 
## distance                                                       0.693229    
## bs(novel_locations, knots = c(1, 26), degree = 1)1:lockdown    0.026896 *  
## bs(novel_locations, knots = c(1, 26), degree = 1)2:lockdown    0.000104 ***
## bs(novel_locations, knots = c(1, 26), degree = 1)3:lockdown    0.001740 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 60180.86

Z Novel Locations & < 100 KM

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1) *  
##     lockdown + dow + distance + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 60039.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0819 -0.5554  0.0443  0.6090  4.1304 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 113.1    10.63   
##  Residual             284.5    16.87   
## Number of obs: 7007, groups:  subject, 234
## 
## Fixed effects:
##                                                                      Estimate
## (Intercept)                                                          76.05164
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1           -22.48642
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2           -23.32310
## lockdown                                                            -30.07450
## dowMonday                                                            -1.62065
## dowSaturday                                                           3.26689
## dowSunday                                                             1.20221
## dowThursday                                                          -1.80161
## dowTuesday                                                           -3.51572
## dowWednesday                                                         -2.15865
## distance                                                             -0.00951
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown   23.92687
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown   28.40375
##                                                                    Std. Error
## (Intercept)                                                           4.38738
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1             4.34269
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2             4.38145
## lockdown                                                              6.31087
## dowMonday                                                             0.77933
## dowSaturday                                                           0.81901
## dowSunday                                                             0.81354
## dowThursday                                                           0.77123
## dowTuesday                                                            0.76702
## dowWednesday                                                          0.79139
## distance                                                              0.02179
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown    6.29886
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown    6.79429
##                                                                            df
## (Intercept)                                                        6990.47096
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          6888.94394
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          6878.05585
## lockdown                                                           6851.18141
## dowMonday                                                          6777.37282
## dowSaturday                                                        6780.24001
## dowSunday                                                          6779.06651
## dowThursday                                                        6778.36770
## dowTuesday                                                         6777.51145
## dowWednesday                                                       6777.35746
## distance                                                           6896.35729
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown 6853.49543
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown 6849.34498
##                                                                    t value
## (Intercept)                                                         17.334
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1           -5.178
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2           -5.323
## lockdown                                                            -4.766
## dowMonday                                                           -2.080
## dowSaturday                                                          3.989
## dowSunday                                                            1.478
## dowThursday                                                         -2.336
## dowTuesday                                                          -4.584
## dowWednesday                                                        -2.728
## distance                                                            -0.436
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown   3.799
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown   4.181
##                                                                       Pr(>|t|)
## (Intercept)                                                            < 2e-16
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          0.000000231
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          0.000000105
## lockdown                                                           0.000001923
## dowMonday                                                             0.037606
## dowSaturday                                                        0.000067093
## dowSunday                                                             0.139523
## dowThursday                                                           0.019519
## dowTuesday                                                         0.000004652
## dowWednesday                                                          0.006394
## distance                                                              0.662507
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown    0.000147
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown 0.000029445
##                                                                       
## (Intercept)                                                        ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1          ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2          ***
## lockdown                                                           ***
## dowMonday                                                          *  
## dowSaturday                                                        ***
## dowSunday                                                             
## dowThursday                                                        *  
## dowTuesday                                                         ***
## dowWednesday                                                       ** 
## distance                                                              
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)1:lockdown ***
## bs(znovel_locations, knots = c(-0.73, -0.3), degree = 1)2:lockdown ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients

26 Median Knots

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50,  
##     60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1) *  
##     lockdown + dow + (1 | subject)
##    Data: df[which(df$distance < 100), ]
## 
## REML criterion at convergence: 59890
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8179 -0.5533  0.0466  0.6000  4.1430 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 113.2    10.64   
##  Residual             284.7    16.87   
## Number of obs: 7007, groups:  subject, 234
## 
## Fixed effects:
##                                                                                                                             Estimate
## (Intercept)                                                                                                                  55.7563
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1             -3.5510
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2             -3.1534
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3             -2.4604
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4             -3.3248
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5             -1.5302
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6             -2.6724
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7              0.9896
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8             -0.1311
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9              0.9072
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10             1.1248
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11             1.6781
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12             4.7381
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13            -0.7666
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14             2.8887
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15             4.9455
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16             8.1079
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17            20.6164
## lockdown                                                                                                                     -8.6189
## dowMonday                                                                                                                    -1.6007
## dowSaturday                                                                                                                   3.2561
## dowSunday                                                                                                                     1.2639
## dowThursday                                                                                                                  -1.7313
## dowTuesday                                                                                                                   -3.3967
## dowWednesday                                                                                                                 -2.1384
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown     4.5384
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown     4.5664
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown     6.5708
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown     5.9013
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown     5.6398
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown     5.0286
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown     1.0727
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown     4.2416
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown    -2.3853
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown   10.1781
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown    4.3716
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown   -0.3297
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown   -2.3138
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown    3.2772
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown  -21.5095
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown   -8.7245
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown  -39.5627
##                                                                                                                            Std. Error
## (Intercept)                                                                                                                    1.6695
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1               1.9154
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2               1.7431
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3               1.6658
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4               1.7216
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5               1.7636
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6               1.8972
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7               1.9694
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8               2.0900
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9               2.1743
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10              2.2636
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11              2.4632
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12              2.6307
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13              2.9363
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14              3.4565
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15              4.2185
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16              2.9991
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17             10.8482
## lockdown                                                                                                                       1.4809
## dowMonday                                                                                                                      0.7818
## dowSaturday                                                                                                                    0.8210
## dowSunday                                                                                                                      0.8152
## dowThursday                                                                                                                    0.7733
## dowTuesday                                                                                                                     0.7689
## dowWednesday                                                                                                                   0.7932
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown      2.1856
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown      2.1418
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown      2.1891
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown      2.2841
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown      2.6356
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown      2.8822
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown      3.1851
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown      3.8480
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown      4.1932
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown     5.1316
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown     5.2693
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown     6.4585
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown     7.6334
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown     7.9912
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown     9.8912
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown    10.5686
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown    33.6789
##                                                                                                                                   df
## (Intercept)                                                                                                                3806.7818
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1           6813.1612
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2           6841.4272
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3           6836.5212
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4           6841.2170
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5           6829.4350
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6           6828.3570
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7           6822.9304
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8           6818.3244
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9           6817.9530
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10          6814.7711
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11          6809.7386
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12          6810.6478
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13          6792.4016
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14          6794.3329
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15          6774.9354
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16          6798.2209
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17          6807.4380
## lockdown                                                                                                                   6813.3795
## dowMonday                                                                                                                  6748.4066
## dowSaturday                                                                                                                6751.7571
## dowSunday                                                                                                                  6749.6817
## dowThursday                                                                                                                6749.7745
## dowTuesday                                                                                                                 6749.2806
## dowWednesday                                                                                                               6748.6728
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown  6793.7840
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown  6803.3897
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown  6797.3261
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown  6794.0919
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown  6787.2906
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown  6784.0661
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown  6785.5358
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown  6778.5337
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown  6787.2221
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown 6767.6963
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown 6768.6050
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown 6773.5115
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown 6783.0877
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown 6795.1440
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown 6777.3207
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown 6758.5167
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown 6775.1514
##                                                                                                                            t value
## (Intercept)                                                                                                                 33.396
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1            -1.854
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2            -1.809
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3            -1.477
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4            -1.931
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5            -0.868
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6            -1.409
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7             0.502
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8            -0.063
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9             0.417
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10            0.497
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11            0.681
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12            1.801
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13           -0.261
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14            0.836
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15            1.172
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16            2.703
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17            1.900
## lockdown                                                                                                                    -5.820
## dowMonday                                                                                                                   -2.048
## dowSaturday                                                                                                                  3.966
## dowSunday                                                                                                                    1.550
## dowThursday                                                                                                                 -2.239
## dowTuesday                                                                                                                  -4.418
## dowWednesday                                                                                                                -2.696
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown    2.077
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown    2.132
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown    3.002
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown    2.584
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown    2.140
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown    1.745
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown    0.337
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown    1.102
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown   -0.569
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown   1.983
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown   0.830
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown  -0.051
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown  -0.303
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown   0.410
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown  -2.175
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown  -0.826
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown  -1.175
##                                                                                                                                 Pr(>|t|)
## (Intercept)                                                                                                                      < 2e-16
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1                 0.06379
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2                 0.07049
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3                 0.13973
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4                 0.05349
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5                 0.38563
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6                 0.15900
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7                 0.61534
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8                 0.94998
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9                 0.67653
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10                0.61926
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11                0.49572
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12                0.07173
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13                0.79404
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14                0.40335
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15                0.24110
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16                0.00688
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17                0.05742
## lockdown                                                                                                                   0.00000000615
## dowMonday                                                                                                                        0.04064
## dowSaturday                                                                                                                0.00007381011
## dowSunday                                                                                                                        0.12111
## dowThursday                                                                                                                      0.02520
## dowTuesday                                                                                                                 0.00001013985
## dowWednesday                                                                                                                     0.00704
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown        0.03788
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown        0.03304
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown        0.00269
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown        0.00980
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown        0.03240
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown        0.08109
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown        0.73630
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown        0.27037
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown        0.56948
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown       0.04736
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown       0.40677
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown       0.95928
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown       0.76181
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown       0.68174
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown       0.02969
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown       0.40911
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown       0.24016
##                                                                                                                               
## (Intercept)                                                                                                                ***
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1           .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2           .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4           .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9              
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12          .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15             
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16          ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17          .  
## lockdown                                                                                                                   ***
## dowMonday                                                                                                                  *  
## dowSaturday                                                                                                                ***
## dowSunday                                                                                                                     
## dowThursday                                                                                                                *  
## dowTuesday                                                                                                                 ***
## dowWednesday                                                                                                               ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)1:lockdown  *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)2:lockdown  *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)3:lockdown  ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)4:lockdown  ** 
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)5:lockdown  *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)6:lockdown  .  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)7:lockdown     
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)8:lockdown     
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)9:lockdown     
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)10:lockdown *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)11:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)12:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)13:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)14:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)15:lockdown *  
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)16:lockdown    
## bs(novel_locations, knots = c(1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), degree = 1)17:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "BIC: "
## [1] 60279.64