PA ~ RE Pre-COVID

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 40550
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9351 -0.5317  0.0479  0.6135  3.4051 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 100.4    10.02   
##  Residual             293.2    17.12   
## Number of obs: 4704, groups:  subject, 235
## 
## Fixed effects:
##                     Estimate   Std. Error           df t value    Pr(>|t|)    
## (Intercept)       63.7195767    2.6286060 4561.2296398  24.241     < 2e-16 ***
## roaming_entropy    0.6839690    0.3054312 4633.6432294   2.239     0.02518 *  
## time_of_day        0.0393902    0.0147668 4513.8747764   2.667     0.00767 ** 
## precipi            1.9529342    1.7794152 4510.3729154   1.098     0.27248    
## mean_temp         -0.1454717    0.0313951 4592.1580271  -4.634 0.000003693 ***
## distance           0.0020185    0.0007145 4524.1150356   2.825     0.00475 ** 
## dowMonday         -3.3458946    1.0370986 4485.3240767  -3.226     0.00126 ** 
## dowSaturday        5.1926165    1.0515998 4487.1482281   4.938 0.000000819 ***
## dowSunday         -0.7705915    1.0374267 4490.4821343  -0.743     0.45765    
## dowThursday       -3.6902263    0.9808393 4480.1967554  -3.762     0.00017 ***
## dowTuesday        -7.9830591    0.9396690 4484.5468147  -8.496     < 2e-16 ***
## dowWednesday      -4.2435757    0.9833081 4477.6926955  -4.316 0.000016260 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## romng_ntrpy -0.246                                                        
## time_of_day -0.165  0.018                                                 
## precipi     -0.084  0.039  0.023                                          
## mean_temp   -0.857 -0.065 -0.008 -0.050                                   
## distance    -0.030 -0.225  0.006 -0.013  0.088                            
## dowMonday   -0.463  0.054  0.030  0.204  0.270  0.025                     
## dowSaturday -0.171  0.117 -0.006  0.157 -0.067 -0.047  0.474              
## dowSunday   -0.409  0.207 -0.007  0.165  0.171 -0.086  0.553  0.491       
## dowThursday -0.259  0.041 -0.001  0.220  0.035  0.003  0.544  0.515  0.535
## dowTuesday  -0.411  0.026 -0.009  0.098  0.221  0.022  0.590  0.505  0.568
## dowWednesdy -0.280  0.042  0.002  0.223  0.059  0.002  0.549  0.511  0.538
##             dwThrs dwTsdy
## romng_ntrpy              
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.568       
## dowWednesdy  0.562  0.569
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 40568
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0355 -0.5295  0.0446  0.6067  3.3217 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 100.7    10.04   
##  Residual             295.5    17.19   
## Number of obs: 4704, groups:  subject, 235
## 
## Fixed effects:
##                  Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)       54.3502     1.2338 1715.3175  44.052  < 2e-16 ***
## roaming_entropy    0.7866     0.2982 4634.3583   2.638 0.008375 ** 
## dowMonday         -2.3267     0.9760 4481.2255  -2.384 0.017165 *  
## dowSaturday        4.8901     1.0397 4488.6743   4.703 2.64e-06 ***
## dowSunday          0.2551     1.0046 4489.7848   0.254 0.799589    
## dowThursday       -3.7095     0.9594 4483.6438  -3.866 0.000112 ***
## dowTuesday        -7.0987     0.9143 4482.4842  -7.764 1.01e-14 ***
## dowWednesday      -4.1609     0.9599 4479.6515  -4.335 1.49e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n dwMndy dwStrd dwSndy dwThrs dwTsdy
## romng_ntrpy -0.624                                          
## dowMonday   -0.455  0.070                                   
## dowSaturday -0.452  0.103  0.497                            
## dowSunday   -0.526  0.203  0.519  0.496                     
## dowThursday -0.442  0.038  0.533  0.503  0.522              
## dowTuesday  -0.464  0.039  0.558  0.527  0.547  0.568       
## dowWednesdy -0.443  0.039  0.531  0.501  0.521  0.538  0.564

PA ~ NL Pre_COVID

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 38633.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8907 -0.5282  0.0526  0.6214  3.4599 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  98.33    9.916  
##  Residual             289.66   17.019  
## Number of obs: 4486, groups:  subject, 235
## 
## Fixed effects:
##                     Estimate   Std. Error           df t value Pr(>|t|)    
## (Intercept)       62.1259866    2.6129661 4355.0657506  23.776  < 2e-16 ***
## novel_locations    0.0284147    0.0047158 4386.3531176   6.025 1.83e-09 ***
## time_of_day        0.0471188    0.0150448 4299.5662055   3.132 0.001749 ** 
## precipi            1.9126912    1.7893848 4296.3350614   1.069 0.285170    
## mean_temp         -0.1271263    0.0315680 4381.5294856  -4.027 5.74e-05 ***
## distance           0.0007613    0.0007388 4320.9160757   1.030 0.302886    
## dowMonday         -2.3215189    1.0807146 4270.2537863  -2.148 0.031759 *  
## dowSaturday        4.7977942    1.0656279 4266.1914477   4.502 6.90e-06 ***
## dowSunday         -0.6807521    1.0444545 4268.6132021  -0.652 0.514580    
## dowThursday       -3.3934806    1.0116515 4264.8165389  -3.354 0.000802 ***
## dowTuesday        -7.3296071    0.9725761 4272.7288483  -7.536 5.87e-14 ***
## dowWednesday      -3.6636573    1.0287113 4262.9821406  -3.561 0.000373 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## novel_lctns -0.201                                                        
## time_of_day -0.167  0.001                                                 
## precipi     -0.086  0.024  0.022                                          
## mean_temp   -0.895  0.090 -0.004 -0.048                                   
## distance    -0.015 -0.340  0.009 -0.011  0.040                            
## dowMonday   -0.475  0.112  0.035  0.214  0.270 -0.005                     
## dowSaturday -0.150 -0.018 -0.009  0.172 -0.066 -0.013  0.482              
## dowSunday   -0.393  0.101 -0.012  0.183  0.187 -0.072  0.569  0.498       
## dowThursday -0.270  0.080 -0.002  0.236  0.034 -0.015  0.556  0.532  0.561
## dowTuesday  -0.434  0.137 -0.007  0.118  0.218 -0.020  0.604  0.520  0.598
## dowWednesdy -0.295  0.082  0.000  0.232  0.066 -0.019  0.555  0.520  0.557
##             dwThrs dwTsdy
## novel_lctns              
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.589       
## dowWednesdy  0.573  0.581
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations + dow + (1 | subject)
##    Data: df[which(df$lockdown == 0), ]
## 
## REML criterion at convergence: 38640.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9500 -0.5263  0.0482  0.6166  3.3909 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  98.61    9.93   
##  Residual             291.24   17.07   
## Number of obs: 4486, groups:  subject, 235
## 
## Fixed effects:
##                    Estimate  Std. Error          df t value Pr(>|t|)    
## (Intercept)       54.306475    1.027725  999.906489  52.841  < 2e-16 ***
## novel_locations    0.031892    0.004418 4375.545796   7.219 6.16e-13 ***
## dowMonday         -1.445749    1.013175 4263.587007  -1.427 0.153668    
## dowSaturday        4.408646    1.050596 4268.202205   4.196 2.77e-05 ***
## dowSunday          0.075401    1.005631 4265.592852   0.075 0.940235    
## dowThursday       -3.423930    0.984557 4267.245919  -3.478 0.000511 ***
## dowTuesday        -6.528255    0.943055 4268.091839  -6.922 5.10e-12 ***
## dowWednesday      -3.563482    0.999880 4264.009131  -3.564 0.000369 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc dwMndy dwStrd dwSndy dwThrs dwTsdy
## novel_lctns -0.298                                          
## dowMonday   -0.539  0.088                                   
## dowSaturday -0.491 -0.021  0.502                            
## dowSunday   -0.536  0.058  0.528  0.506                     
## dowThursday -0.551  0.072  0.544  0.517  0.544              
## dowTuesday  -0.588  0.116  0.570  0.539  0.571  0.586       
## dowWednesdy -0.540  0.069  0.533  0.508  0.534  0.547  0.572

RE ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 18289.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8045 -0.6161  0.0784  0.6475  5.1130 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.08609  0.2934  
##  Residual             0.61030  0.7812  
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##                   Estimate    Std. Error            df t value   Pr(>|t|)    
## (Intercept)     2.23332494    0.07637353 5203.81162561  29.242    < 2e-16 ***
## lockdown       -1.37826352    0.02024977 7555.64423459 -68.063    < 2e-16 ***
## time_of_day    -0.00086690    0.00052751 7433.35657459  -1.643    0.10035    
## precipi        -0.04195687    0.04408735 7412.04692778  -0.952    0.34129    
## mean_temp       0.00336143    0.00092922 6822.53759508   3.617    0.00030 ***
## distance        0.00054220    0.00003119 7446.07458771  17.382    < 2e-16 ***
## dowMonday      -0.15534584    0.03471771 7407.60561552  -4.475 0.00000777 ***
## dowSaturday    -0.11232246    0.03582602 7386.67966176  -3.135    0.00172 ** 
## dowSunday      -0.45042623    0.03566455 7389.61321366 -12.630    < 2e-16 ***
## dowThursday    -0.05495296    0.03420568 7382.98487046  -1.607    0.10820    
## dowTuesday     -0.04916465    0.03393596 7393.23307331  -1.449    0.14745    
## dowWednesday   -0.09611265    0.03464714 7378.91899491  -2.774    0.00555 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.291                                                        
## time_of_day -0.208  0.005                                                 
## precipi     -0.018 -0.200  0.022                                          
## mean_temp   -0.879  0.244  0.003 -0.048                                   
## distance    -0.067  0.113  0.009  0.000  0.039                            
## dowMonday   -0.383  0.000  0.034  0.053  0.153  0.019                     
## dowSaturday -0.228 -0.037 -0.002 -0.043  0.003 -0.018  0.513              
## dowSunday   -0.315  0.018 -0.011  0.015  0.095 -0.041  0.530  0.500       
## dowThursday -0.264 -0.030 -0.003  0.100  0.018  0.007  0.548  0.519  0.527
## dowTuesday  -0.350  0.076 -0.003 -0.031  0.116  0.016  0.557  0.525  0.537
## dowWednesdy -0.271  0.006  0.001  0.047  0.030  0.008  0.538  0.512  0.520
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.550       
## dowWednesdy  0.544  0.544
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 50657.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8257 -0.6328  0.0263  0.6198  8.3853 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.1144   0.3382  
##  Residual             0.6973   0.8351  
## Number of obs: 20179, groups:  subject, 236
## 
## Fixed effects:
##                 Estimate  Std. Error          df  t value Pr(>|t|)    
## (Intercept)      2.50502     0.02751   484.85536   91.046  < 2e-16 ***
## lockdown        -1.27637     0.01223 20140.08462 -104.364  < 2e-16 ***
## dowMonday       -0.18130     0.02205 19944.67274   -8.222  < 2e-16 ***
## dowSaturday     -0.18098     0.02236 19944.74709   -8.093 6.14e-16 ***
## dowSunday       -0.41082     0.02220 19946.22733  -18.502  < 2e-16 ***
## dowThursday     -0.06820     0.02172 19943.51170   -3.140  0.00169 ** 
## dowTuesday      -0.15661     0.02176 19944.87451   -7.198 6.35e-13 ***
## dowWednesday    -0.12033     0.02180 19943.46055   -5.520 3.44e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.181                                          
## dowMonday   -0.394 -0.007                                   
## dowSaturday -0.386 -0.024  0.487                            
## dowSunday   -0.395  0.006  0.491  0.484                     
## dowThursday -0.399 -0.011  0.501  0.495  0.498              
## dowTuesday  -0.401  0.000  0.501  0.493  0.497  0.508       
## dowWednesdy -0.401  0.005  0.500  0.492  0.496  0.507  0.506

NL ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + time_of_day + precipi + mean_temp +  
##     distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 78122.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -8.5540 -0.5112 -0.1836  0.2604 13.2159 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  196     14.00   
##  Residual             2222     47.14   
## Number of obs: 7382, groups:  subject, 235
## 
## Fixed effects:
##                   Estimate    Std. Error            df t value Pr(>|t|)    
## (Intercept)    79.46594920    4.52258822 4680.14234864  17.571  < 2e-16 ***
## lockdown      -34.01416743    1.22752270 7367.45084975 -27.710  < 2e-16 ***
## time_of_day    -0.00002221    0.03226673 7240.86793319  -0.001  0.99945    
## precipi        -2.32062583    2.66456683 7215.83312960  -0.871  0.38383    
## mean_temp      -0.27670139    0.05542853 5473.36047005  -4.992 6.16e-07 ***
## distance        0.05593241    0.00188585 7261.30932870  29.659  < 2e-16 ***
## dowMonday     -14.11917046    2.14502091 7202.55129276  -6.582 4.96e-11 ***
## dowSaturday     7.07487999    2.19149956 7175.91165405   3.228  0.00125 ** 
## dowSunday     -12.14535664    2.18625649 7181.69262052  -5.555 2.87e-08 ***
## dowThursday    -8.38355531    2.10313960 7173.92850023  -3.986 6.78e-05 ***
## dowTuesday    -16.91209404    2.08512427 7184.91787399  -8.111 5.87e-16 ***
## dowWednesday  -10.35630317    2.15075756 7169.52112856  -4.815 1.50e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.296                                                        
## time_of_day -0.215  0.003                                                 
## precipi     -0.021 -0.195  0.022                                          
## mean_temp   -0.882  0.241  0.003 -0.049                                   
## distance    -0.070  0.115  0.008  0.001  0.040                            
## dowMonday   -0.387 -0.003  0.037  0.055  0.142  0.017                     
## dowSaturday -0.240 -0.029 -0.002 -0.038 -0.001 -0.017  0.521              
## dowSunday   -0.324  0.024 -0.013  0.020  0.088 -0.040  0.536  0.512       
## dowThursday -0.273 -0.025 -0.003  0.103  0.011  0.007  0.553  0.530  0.538
## dowTuesday  -0.357  0.080 -0.001 -0.026  0.105  0.016  0.561  0.536  0.547
## dowWednesdy -0.280  0.004  0.000  0.047  0.027  0.006  0.539  0.519  0.525
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.559       
## dowWednesdy  0.548  0.549
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 201341.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0560 -0.5151 -0.2065  0.2194 18.1264 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  287.2   16.95   
##  Residual             2878.1   53.65   
## Number of obs: 18594, groups:  subject, 236
## 
## Fixed effects:
##                Estimate Std. Error         df t value     Pr(>|t|)    
## (Intercept)     65.4615     1.5660   702.9386  41.802      < 2e-16 ***
## lockdown       -29.9202     0.8134 18586.0000 -36.783      < 2e-16 ***
## dowMonday      -15.9583     1.4763 18360.9852 -10.810      < 2e-16 ***
## dowSaturday      3.0628     1.4973 18362.4381   2.046       0.0408 *  
## dowSunday       -8.3229     1.4870 18363.3419  -5.597 0.0000000221 ***
## dowThursday     -7.5872     1.4519 18359.8449  -5.226 0.0000001753 ***
## dowTuesday     -13.5934     1.4553 18361.3992  -9.341      < 2e-16 ***
## dowWednesday   -12.2980     1.4581 18359.8400  -8.434      < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.231                                          
## dowMonday   -0.462 -0.008                                   
## dowSaturday -0.451 -0.027  0.486                            
## dowSunday   -0.463  0.006  0.489  0.483                     
## dowThursday -0.469 -0.012  0.501  0.494  0.497              
## dowTuesday  -0.471  0.000  0.500  0.493  0.497  0.509       
## dowWednesdy -0.471  0.005  0.499  0.492  0.495  0.507  0.506

PA ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ lockdown + time_of_day + precipi + mean_temp + distance +  
##     dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 65436.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7609 -0.5503  0.0519  0.6008  4.0604 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 110.9    10.53   
##  Residual             297.0    17.23   
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##                  Estimate   Std. Error           df t value Pr(>|t|)    
## (Intercept)    55.9905095    1.8028034 4180.6145814  31.057  < 2e-16 ***
## lockdown       -6.1381870    0.4492333 7470.8456718 -13.664  < 2e-16 ***
## time_of_day     0.0231544    0.0116553 7394.2893472   1.987 0.047005 *  
## precipi        -2.0138002    0.9736188 7383.5972288  -2.068 0.038640 *  
## mean_temp      -0.0151195    0.0210268 7571.2815933  -0.719 0.472126    
## distance        0.0027475    0.0006894 7400.0173462   3.985 6.81e-05 ***
## dowMonday      -2.5588679    0.7666255 7381.4490484  -3.338 0.000849 ***
## dowSaturday     3.4074295    0.7907371 7371.5958353   4.309 1.66e-05 ***
## dowSunday       0.3890657    0.7872355 7373.9914289   0.494 0.621167    
## dowThursday    -2.7613043    0.7549105 7369.6332947  -3.658 0.000256 ***
## dowTuesday     -4.7998337    0.7491348 7375.3764413  -6.407 1.57e-10 ***
## dowWednesday   -2.7413840    0.7645870 7367.6839030  -3.585 0.000339 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.278                                                        
## time_of_day -0.196  0.005                                                 
## precipi     -0.016 -0.200  0.021                                          
## mean_temp   -0.843  0.246  0.004 -0.049                                   
## distance    -0.062  0.112  0.009  0.000  0.037                            
## dowMonday   -0.364  0.001  0.034  0.053  0.157  0.019                     
## dowSaturday -0.213 -0.037 -0.002 -0.043  0.002 -0.018  0.512              
## dowSunday   -0.299  0.019 -0.011  0.015  0.097 -0.041  0.530  0.500       
## dowThursday -0.247 -0.030 -0.003  0.100  0.018  0.007  0.548  0.519  0.527
## dowTuesday  -0.332  0.076 -0.003 -0.031  0.119  0.016  0.557  0.525  0.538
## dowWednesdy -0.254  0.006  0.001  0.047  0.030  0.008  0.538  0.512  0.519
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.549       
## dowWednesdy  0.543  0.544
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 65437.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7724 -0.5517  0.0488  0.6037  4.0525 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 110.8    10.53   
##  Residual             297.8    17.26   
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    55.5937     0.9008  572.5513  61.714  < 2e-16 ***
## lockdown       -6.4301     0.4252 7467.5013 -15.122  < 2e-16 ***
## dowMonday      -2.4634     0.7563 7372.3290  -3.257 0.001131 ** 
## dowSaturday     3.3955     0.7910 7375.3794   4.293 1.79e-05 ***
## dowSunday       0.6359     0.7837 7373.4125   0.811 0.417156    
## dowThursday    -2.6031     0.7520 7374.1421  -3.462 0.000540 ***
## dowTuesday     -4.8061     0.7446 7371.9998  -6.454 1.16e-10 ***
## dowWednesday   -2.6695     0.7644 7371.4363  -3.492 0.000482 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.163                                          
## dowMonday   -0.452 -0.029                                   
## dowSaturday -0.430 -0.047  0.523                            
## dowSunday   -0.442  0.003  0.526  0.504                     
## dowThursday -0.457 -0.017  0.550  0.527  0.529              
## dowTuesday  -0.473  0.044  0.552  0.528  0.534  0.557       
## dowWednesdy -0.454  0.007  0.539  0.515  0.520  0.542  0.546

NA ~ Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_avg ~ lockdown + time_of_day + precipi + mean_temp + distance +  
##     dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 65832.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5769 -0.6260 -0.0655  0.5539  4.4677 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 189.5    13.77   
##  Residual             308.4    17.56   
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##                 Estimate  Std. Error          df t value Pr(>|t|)    
## (Intercept)    39.799952    1.931040 2976.320611  20.611  < 2e-16 ***
## lockdown        3.756539    0.458610 7432.765633   8.191 3.02e-16 ***
## time_of_day    -0.021944    0.011884 7379.268544  -1.846 0.064863 .  
## precipi         2.041987    0.992609 7371.987982   2.057 0.039703 *  
## mean_temp       0.012518    0.021585 7578.371525   0.580 0.561971    
## distance       -0.002198    0.000703 7382.747374  -3.126 0.001779 ** 
## dowMonday       1.244207    0.781555 7370.481514   1.592 0.111436    
## dowSaturday    -3.049588    0.806030 7364.062095  -3.783 0.000156 ***
## dowSunday      -0.959183    0.802491 7366.407078  -1.195 0.232025    
## dowThursday     2.076830    0.769490 7362.728700   2.699 0.006971 ** 
## dowTuesday      3.811251    0.763665 7367.057950   4.991 6.15e-07 ***
## dowWednesday    2.004373    0.779333 7361.440017   2.572 0.010133 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn tm_f_d precip mn_tmp distnc dwMndy dwStrd dwSndy
## lockdown    -0.266                                                        
## time_of_day -0.187  0.006                                                 
## precipi     -0.014 -0.200  0.021                                          
## mean_temp   -0.808  0.246  0.004 -0.049                                   
## distance    -0.059  0.112  0.009  0.000  0.037                            
## dowMonday   -0.349  0.002  0.034  0.053  0.158  0.019                     
## dowSaturday -0.203 -0.037 -0.003 -0.043  0.002 -0.018  0.512              
## dowSunday   -0.285  0.019 -0.011  0.014  0.098 -0.041  0.530  0.500       
## dowThursday -0.235 -0.030 -0.003  0.100  0.017  0.007  0.547  0.519  0.527
## dowTuesday  -0.318  0.076 -0.003 -0.031  0.119  0.016  0.557  0.525  0.538
## dowWednesdy -0.242  0.006  0.002  0.047  0.030  0.008  0.538  0.512  0.519
##             dwThrs dwTsdy
## lockdown                 
## time_of_day              
## precipi                  
## mean_temp                
## distance                 
## dowMonday                
## dowSaturday              
## dowSunday                
## dowThursday              
## dowTuesday   0.549       
## dowWednesdy  0.543  0.544
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: NA_avg ~ lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 65826.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5657 -0.6293 -0.0675  0.5549  4.4978 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 189.5    13.77   
##  Residual             309.0    17.58   
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##               Estimate Std. Error        df t value   Pr(>|t|)    
## (Intercept)    40.0884     1.0773  427.9039  37.212    < 2e-16 ***
## lockdown        4.0272     0.4338 7431.5681   9.283    < 2e-16 ***
## dowMonday       1.1522     0.7706 7365.9142   1.495   0.134872    
## dowSaturday    -3.0252     0.8059 7367.9580  -3.754   0.000176 ***
## dowSunday      -1.1673     0.7984 7367.4570  -1.462   0.143765    
## dowThursday     1.9151     0.7662 7367.1088   2.500   0.012453 *  
## dowTuesday      3.8223     0.7586 7366.2917   5.038 0.00000048 ***
## dowWednesday    1.9303     0.7788 7365.3224   2.478   0.013216 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy
## lockdown    -0.138                                          
## dowMonday   -0.385 -0.029                                   
## dowSaturday -0.366 -0.047  0.523                            
## dowSunday   -0.377  0.003  0.526  0.504                     
## dowThursday -0.389 -0.017  0.550  0.527  0.529              
## dowTuesday  -0.403  0.043  0.552  0.528  0.534  0.557       
## dowWednesdy -0.386  0.007  0.539  0.515  0.520  0.542  0.546

PA ~ RE * Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * lockdown + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 65427.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7640 -0.5468  0.0491  0.6066  4.0451 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 110.8    10.53   
##  Residual             296.7    17.22   
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##                             Estimate  Std. Error          df t value Pr(>|t|)
## (Intercept)                55.113748    1.905466 4711.890214  28.924  < 2e-16
## roaming_entropy             0.344825    0.295085 7475.902634   1.169 0.242617
## lockdown                   -6.581151    0.900484 7437.658312  -7.308 2.98e-13
## time_of_day                 0.023681    0.011652 7392.593937   2.032 0.042151
## precipi                    -1.976503    0.973223 7381.775781  -2.031 0.042303
## mean_temp                  -0.014823    0.021089 7567.510146  -0.703 0.482154
## distance                    0.002519    0.000705 7399.917407   3.573 0.000356
## dowMonday                  -2.457536    0.767235 7378.517055  -3.203 0.001365
## dowSaturday                 3.337124    0.794463 7370.591371   4.200 2.69e-05
## dowSunday                   0.560037    0.797195 7372.879285   0.703 0.482383
## dowThursday                -2.759027    0.754852 7367.696588  -3.655 0.000259
## dowTuesday                 -4.771836    0.748864 7373.219110  -6.372 1.98e-10
## dowWednesday               -2.680733    0.764596 7365.619103  -3.506 0.000457
## roaming_entropy:lockdown    1.010589    0.543723 7451.425647   1.859 0.063116
##                             
## (Intercept)              ***
## roaming_entropy             
## lockdown                 ***
## time_of_day              *  
## precipi                  *  
## mean_temp                   
## distance                 ***
## dowMonday                ** 
## dowSaturday              ***
## dowSunday                   
## dowThursday              ***
## dowTuesday               ***
## dowWednesday             ***
## roaming_entropy:lockdown .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 65425.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7693 -0.5504  0.0474  0.6013  4.0351 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 110.7    10.52   
##  Residual             297.4    17.25   
## Number of obs: 7600, groups:  subject, 235
## 
## Fixed effects:
##                           Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                54.2537     1.1518 1411.3111  47.104  < 2e-16 ***
## roaming_entropy             0.5401     0.2882 7472.8998   1.874 0.060967 .  
## lockdown                   -6.4722     0.8927 7443.0408  -7.250 4.57e-13 ***
## dowMonday                  -2.3332     0.7571 7370.5069  -3.082 0.002067 ** 
## dowSaturday                 3.3544     0.7943 7374.2579   4.223 2.44e-05 ***
## dowSunday                   0.8779     0.7928 7374.3067   1.107 0.268153    
## dowThursday                -2.5887     0.7518 7372.2309  -3.443 0.000578 ***
## dowTuesday                 -4.7624     0.7444 7370.1866  -6.398 1.67e-10 ***
## dowWednesday               -2.5919     0.7643 7369.5042  -3.391 0.000700 ***
## roaming_entropy:lockdown    0.8967     0.5415 7455.0963   1.656 0.097725 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## romng_ntrpy -0.624                                                        
## lockdown    -0.521  0.737                                                 
## dowMonday   -0.387  0.054  0.014                                          
## dowSaturday -0.381  0.074  0.063  0.522                                   
## dowSunday   -0.439  0.155  0.114  0.527  0.506                            
## dowThursday -0.375  0.029  0.019  0.550  0.527  0.527                     
## dowTuesday  -0.385  0.025  0.037  0.553  0.527  0.532  0.557              
## dowWednesdy -0.373  0.029  0.018  0.540  0.514  0.518  0.542  0.547       
## rmng_ntrpy:  0.310 -0.495 -0.782 -0.006 -0.092 -0.073 -0.024 -0.009 -0.001

PA ~ NL * Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * lockdown + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 63512.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8456 -0.5445  0.0543  0.5998  4.0830 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 109.8    10.48   
##  Residual             294.1    17.15   
## Number of obs: 7382, groups:  subject, 235
## 
## Fixed effects:
##                              Estimate   Std. Error           df t value
## (Intercept)                53.7938933    1.8477370 4273.3864931  29.113
## novel_locations             0.0299498    0.0046173 7238.9349622   6.486
## lockdown                   -5.0041254    0.5515195 7264.3485676  -9.073
## time_of_day                 0.0280818    0.0117760 7175.8243956   2.385
## precipi                    -2.0477633    0.9716943 7165.9445552  -2.107
## mean_temp                  -0.0096146    0.0211971 7340.9413595  -0.454
## distance                    0.0009667    0.0007321 7194.4897010   1.320
## dowMonday                  -1.9081440    0.7842486 7162.4092946  -2.433
## dowSaturday                 3.2569388    0.8005379 7152.7172526   4.068
## dowSunday                   0.7388585    0.7982585 7156.2229377   0.926
## dowThursday                -2.5594679    0.7672675 7150.7762233  -3.336
## dowTuesday                 -4.3376172    0.7634539 7157.6232827  -5.682
## dowWednesday               -2.2248313    0.7844999 7149.8002894  -2.836
## novel_locations:lockdown   -0.0091230    0.0109087 7234.6439988  -0.836
##                          Pr(>|t|)    
## (Intercept)               < 2e-16 ***
## novel_locations          9.37e-11 ***
## lockdown                  < 2e-16 ***
## time_of_day              0.017120 *  
## precipi                  0.035116 *  
## mean_temp                0.650143    
## distance                 0.186719    
## dowMonday                0.014995 *  
## dowSaturday              4.78e-05 ***
## dowSunday                0.354691    
## dowThursday              0.000855 ***
## dowTuesday               1.39e-08 ***
## dowWednesday             0.004581 ** 
## novel_locations:lockdown 0.403009    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * lockdown + dow + (1 | subject)
##    Data: df
## 
## REML criterion at convergence: 63501
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8350 -0.5436  0.0511  0.6045  4.0724 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 109.8    10.48   
##  Residual             294.5    17.16   
## Number of obs: 7382, groups:  subject, 235
## 
## Fixed effects:
##                             Estimate  Std. Error          df t value Pr(>|t|)
## (Intercept)                53.652246    0.950259  710.578973  56.461  < 2e-16
## novel_locations             0.032194    0.004341 7230.537605   7.416 1.35e-13
## lockdown                   -5.100464    0.533108 7254.067154  -9.567  < 2e-16
## dowMonday                  -1.803315    0.773458 7152.880208  -2.331  0.01975
## dowSaturday                 3.200919    0.800371 7156.569011   3.999 6.42e-05
## dowSunday                   0.907098    0.793241 7154.954141   1.144  0.25286
## dowThursday                -2.363555    0.763419 7155.043298  -3.096  0.00197
## dowTuesday                 -4.307515    0.758545 7153.607511  -5.679 1.41e-08
## dowWednesday               -2.116064    0.783565 7153.513655  -2.701  0.00694
## novel_locations:lockdown   -0.010190    0.010872 7239.104616  -0.937  0.34862
##                             
## (Intercept)              ***
## novel_locations          ***
## lockdown                 ***
## dowMonday                *  
## dowSaturday              ***
## dowSunday                   
## dowThursday              ** 
## dowTuesday               ***
## dowWednesday             ** 
## novel_locations:lockdown    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc lckdwn dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## novel_lctns -0.293                                                        
## lockdown    -0.267  0.454                                                 
## dowMonday   -0.457  0.066  0.000                                          
## dowSaturday -0.420 -0.014 -0.006  0.526                                   
## dowSunday   -0.448  0.043  0.027  0.534  0.513                            
## dowThursday -0.464  0.054  0.022  0.557  0.536  0.541                     
## dowTuesday  -0.489  0.092  0.081  0.560  0.534  0.546  0.568              
## dowWednesdy -0.454  0.052  0.024  0.541  0.518  0.526  0.547  0.552       
## nvl_lctns:l  0.112 -0.367 -0.528 -0.006 -0.066 -0.011 -0.034 -0.029 -0.007

PA ~ Distance * Lockdown Varying Distances

PA ~ RE * Pre_COVID_RE Post-Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * pre_covid_re + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 24811
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5388 -0.5538  0.0620  0.5701  4.1415 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 166.5    12.90   
##  Residual             264.4    16.26   
## Number of obs: 2896, groups:  subject, 208
## 
## Fixed effects:
##                                  Estimate   Std. Error           df t value
## (Intercept)                    41.8586144    7.5689355  347.1193046   5.530
## roaming_entropy                -1.3575264    3.3859277 2864.6485184  -0.401
## pre_covid_re                    0.8416085    2.7787265  264.3027626   0.303
## time_of_day                    -0.0009883    0.0183795 2738.9726565  -0.054
## precipi                        -4.0697310    1.1546343 2722.8342591  -3.525
## mean_temp                       0.0383689    0.0448484 1060.8629415   0.856
## distance                       -0.0038547    0.0073194 2732.0005017  -0.527
## dowMonday                      -1.3572994    1.1471750 2705.2372126  -1.183
## dowSaturday                     2.7652455    1.2121384 2721.6519284   2.281
## dowSunday                       2.9552637    1.2358285 2706.3122475   2.391
## dowThursday                    -0.6335195    1.1500512 2702.8094389  -0.551
## dowTuesday                      1.0514301    1.2396782 2702.1866935   0.848
## dowWednesday                    0.8163617    1.2094554 2712.6355430   0.675
## roaming_entropy:pre_covid_re    1.5325075    1.3895678 2867.1441350   1.103
##                                 Pr(>|t|)    
## (Intercept)                  0.000000063 ***
## roaming_entropy                 0.688500    
## pre_covid_re                    0.762223    
## time_of_day                     0.957120    
## precipi                         0.000431 ***
## mean_temp                       0.392453    
## distance                        0.598482    
## dowMonday                       0.236847    
## dowSaturday                     0.022608 *  
## dowSunday                       0.016856 *  
## dowThursday                     0.581774    
## dowTuesday                      0.396431    
## dowWednesday                    0.499744    
## roaming_entropy:pre_covid_re    0.270178    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * pre_covid_re + +dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 24807.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5237 -0.5383  0.0649  0.5686  3.9392 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 166.6    12.91   
##  Residual             265.3    16.29   
## Number of obs: 2896, groups:  subject, 208
## 
## Fixed effects:
##                               Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    44.4463     6.5589  261.1861   6.777 8.14e-11
## roaming_entropy                -0.9564     3.3883 2868.6240  -0.282   0.7777
## pre_covid_re                    0.6749     2.7566  259.8409   0.245   0.8068
## dowMonday                      -1.7111     1.1438 2706.5711  -1.496   0.1348
## dowSaturday                     1.7693     1.1825 2716.3926   1.496   0.1347
## dowSunday                       2.4902     1.2283 2703.3797   2.027   0.0427
## dowThursday                    -0.6386     1.1520 2705.9803  -0.554   0.5794
## dowTuesday                      0.4690     1.2278 2700.3817   0.382   0.7025
## dowWednesday                    0.4140     1.2035 2708.3295   0.344   0.7309
## roaming_entropy:pre_covid_re    1.3480     1.3883 2870.3372   0.971   0.3316
##                                 
## (Intercept)                  ***
## roaming_entropy                 
## pre_covid_re                    
## dowMonday                       
## dowSaturday                     
## dowSunday                    *  
## dowThursday                     
## dowTuesday                      
## dowWednesday                    
## roaming_entropy:pre_covid_re    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) rmng_n pr_cv_ dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## romng_ntrpy -0.334                                                        
## pre_covid_r -0.979  0.334                                                 
## dowMonday   -0.099 -0.012 -0.004                                          
## dowSaturday -0.101 -0.016  0.010  0.559                                   
## dowSunday   -0.086 -0.028 -0.008  0.540  0.522                            
## dowThursday -0.098 -0.021 -0.001  0.575  0.561  0.536                     
## dowTuesday  -0.081 -0.036 -0.013  0.538  0.520  0.500  0.536              
## dowWednesdy -0.092 -0.016 -0.006  0.556  0.531  0.512  0.546  0.512       
## rmng_ntr:__  0.341 -0.989 -0.351  0.017 -0.001  0.028  0.017  0.036  0.020

PA ~ NL * Pre_COVID_RE Post-Lockdown

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * pre_covid_re + time_of_day + precipi +  
##     mean_temp + distance + dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 24834.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4867 -0.5461  0.0601  0.5672  4.1046 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 165.3    12.86   
##  Residual             265.4    16.29   
## Number of obs: 2896, groups:  subject, 208
## 
## Fixed effects:
##                                 Estimate  Std. Error          df t value
## (Intercept)                    39.309860    7.270180  304.725753   5.407
## novel_locations                 0.062503    0.093859 2852.882109   0.666
## pre_covid_re                    2.456724    2.625980  217.202096   0.936
## time_of_day                    -0.002680    0.018407 2739.566888  -0.146
## precipi                        -4.137219    1.155881 2723.195935  -3.579
## mean_temp                       0.040467    0.044847 1051.200153   0.902
## distance                       -0.004445    0.007819 2716.886548  -0.568
## dowMonday                      -1.425459    1.149389 2705.636350  -1.240
## dowSaturday                     2.874666    1.214204 2719.844128   2.368
## dowSunday                       2.971939    1.237622 2706.095208   2.401
## dowThursday                    -0.623778    1.152305 2702.537329  -0.541
## dowTuesday                      1.081399    1.241030 2701.848980   0.871
## dowWednesday                    0.742040    1.211656 2712.814987   0.612
## novel_locations:pre_covid_re   -0.009149    0.037389 2853.207303  -0.245
##                                Pr(>|t|)    
## (Intercept)                  0.00000013 ***
## novel_locations                0.505514    
## pre_covid_re                   0.350546    
## time_of_day                    0.884245    
## precipi                        0.000351 ***
## mean_temp                      0.367078    
## distance                       0.569788    
## dowMonday                      0.215013    
## dowSaturday                    0.017977 *  
## dowSunday                      0.016403 *  
## dowThursday                    0.588324    
## dowTuesday                     0.383628    
## dowWednesday                   0.540312    
## novel_locations:pre_covid_re   0.806698    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * pre_covid_re + dow + (1 | subject)
##    Data: df[which(df$lockdown == 1), ]
## 
## REML criterion at convergence: 24832.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4888 -0.5360  0.0580  0.5632  4.0054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 165.4    12.86   
##  Residual             266.4    16.32   
## Number of obs: 2896, groups:  subject, 208
## 
## Fixed effects:
##                                 Estimate  Std. Error          df t value
## (Intercept)                    42.275370    6.234214  218.562476   6.781
## novel_locations                 0.059268    0.093433 2857.692402   0.634
## pre_covid_re                    2.165652    2.606072  213.148319   0.831
## dowMonday                      -1.782873    1.146159 2706.949264  -1.556
## dowSaturday                     1.879544    1.185827 2714.028572   1.585
## dowSunday                       2.502277    1.230318 2703.170927   2.034
## dowThursday                    -0.621276    1.154321 2705.639679  -0.538
## dowTuesday                      0.494670    1.229497 2700.036549   0.402
## dowWednesday                    0.335930    1.205796 2708.662731   0.279
## novel_locations:pre_covid_re   -0.008972    0.037405 2857.373412  -0.240
##                              Pr(>|t|)    
## (Intercept)                   1.1e-10 ***
## novel_locations                0.5259    
## pre_covid_re                   0.4069    
## dowMonday                      0.1199    
## dowSaturday                    0.1131    
## dowSunday                      0.0421 *  
## dowThursday                    0.5905    
## dowTuesday                     0.6875    
## dowWednesday                   0.7806    
## novel_locations:pre_covid_re   0.8105    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nvl_lc pr_cv_ dwMndy dwStrd dwSndy dwThrs dwTsdy dwWdns
## novel_lctns -0.157                                                        
## pre_covid_r -0.979  0.158                                                 
## dowMonday   -0.106 -0.021 -0.001                                          
## dowSaturday -0.106 -0.025  0.006  0.558                                   
## dowSunday   -0.099 -0.011 -0.001  0.540  0.521                            
## dowThursday -0.106 -0.026  0.001  0.575  0.560  0.536                     
## dowTuesday  -0.098  0.003 -0.001  0.538  0.518  0.500  0.535              
## dowWednesdy -0.100 -0.021 -0.002  0.556  0.531  0.512  0.547  0.512       
## nvl_lctn:__  0.163 -0.994 -0.167  0.024  0.012  0.012  0.023 -0.001  0.023

```