1 One-Way Manova

library(readxl)
Data_Manova = read_excel("D:/Praktikum R/Data Latihan/Data Manova.xlsx")
head(Data_Manova, n = 7)
  • Menyimpan Data_Manova dalam bentuk matriks x
data1 = Data_Manova[,-(1:2)]
x <- as.matrix(data1)
x
##      Y1 Y2
## [1,]  6  7
## [2,]  5  9
## [3,]  4  6
## [4,]  6  6
## [5,]  4  7
## [6,]  5  4
## [7,]  6  4
  • Menentukan Vektor Rataan
xbar1 = matrix(data = c(mean(x[1:2,1]), mean(x[1:2,2])), nrow = 2)
xbar1
##      [,1]
## [1,]  5.5
## [2,]  8.0
xbar2 = matrix(data = c(mean(x[3:5,1]), mean(x[3:5,2])), nrow = 2)
xbar2
##          [,1]
## [1,] 4.666667
## [2,] 6.333333
xbar3 = matrix(data = c(mean(x[6:7,1]), mean(x[6:7,2])), nrow = 2)
xbar3
##      [,1]
## [1,]  5.5
## [2,]  4.0
xbar = matrix(data = c(mean(x[,1]), mean(x[,2])), nrow = 2)
xbar
##          [,1]
## [1,] 5.142857
## [2,] 6.142857
  • Menentukan Matriks Jumlah Kuadrat

Jumlah Kuadrat Perlakuan

B = (2*(xbar1-xbar)%*%t(xbar1-xbar)) +
    (3*(xbar2-xbar)%*%t(xbar2-xbar)) +
    (2*(xbar3-xbar)%*%t(xbar3-xbar))
B
##            [,1]       [,2]
## [1,]  1.1904762 -0.4761905
## [2,] -0.4761905 16.1904762

Jumlah Kuadrat Galat

W = (x[1,1:2]-xbar1)%*%t(x[1,1:2]-xbar1) + (x[2,1:2]-xbar1)%*%t(x[2,1:2]-xbar1) +
    (x[3,1:2]-xbar2)%*%t(x[3,1:2]-xbar2) + (x[4,1:2]-xbar2)%*%t(x[4,1:2]-xbar2) + (x[5,1:2]-xbar2)%*%t(x[5,1:2]-xbar2) +
    (x[6,1:2]-xbar3)%*%t(x[6,1:2]-xbar3) + (x[7,1:2]-xbar3)%*%t(x[7,1:2]-xbar3)
W
##           [,1]      [,2]
## [1,]  3.666667 -1.666667
## [2,] -1.666667  2.666667

Jumlah Kuadrat Total

T = W + B
T
##           [,1]      [,2]
## [1,]  4.857143 -2.142857
## [2,] -2.142857 18.857143
  • Menghitung Statistik Uji Wilk Lambda
datamanova1 <- Data_Manova[,-2]

uji <- manova(cbind(datamanova1$Y1, datamanova1$Y2) ~ datamanova1$Perlakuan, data = datamanova1)
uji
## Call:
##    manova(cbind(datamanova1$Y1, datamanova1$Y2) ~ datamanova1$Perlakuan, 
##     data = datamanova1)
## 
## Terms:
##                 datamanova1$Perlakuan Residuals
## resp 1                       1.190476  3.666667
## resp 2                      16.190476  2.666667
## Deg. of Freedom                     2         4
## 
## Residual standard errors: 0.9574271 0.8164966
## Estimated effects may be unbalanced
summary.manova(uji, test = "Wilks")
##                       Df   Wilks approx F num Df den Df  Pr(>F)  
## datamanova1$Perlakuan  2 0.08046   3.7881      4      6 0.07187 .
## Residuals              4                                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2 Two-Way Manova

Data_Manova_RAK <- read_excel("D:/Praktikum R/Data Latihan/Data Manova RAK.xlsx")
head(Data_Manova_RAK, n = 16)
datamanova2 =Data_Manova_RAK

Analisis Manova Dua Arah

uji2 <- manova(cbind(datamanova2$MAT, datamanova2$BI, datamanova2$IPA) ~ 
                datamanova2$Kelompok + datamanova2$Perlakuan, data = datamanova2)
uji2
## Call:
##    manova(cbind(datamanova2$MAT, datamanova2$BI, datamanova2$IPA) ~ 
##     datamanova2$Kelompok + datamanova2$Perlakuan, data = datamanova2)
## 
## Terms:
##                 datamanova2$Kelompok datamanova2$Perlakuan Residuals
## resp 1                         811.5                 651.5      77.0
## resp 2                         288.5                 693.0     125.5
## resp 3                      540.6875              485.1875   13.0625
## Deg. of Freedom                    3                     3         9
## 
## Residual standard errors: 2.924988 3.734226 1.204736
## Estimated effects may be unbalanced
summary.manova(uji2)
##                       Df Pillai approx F num Df den Df    Pr(>F)    
## datamanova2$Kelompok   3 1.9428   5.5133      9     27 0.0002539 ***
## datamanova2$Perlakuan  3 1.8051   4.5319      9     27 0.0010563 ** 
## Residuals              9                                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.manova(uji2, test = "Wilks")
##                       Df     Wilks approx F num Df den Df    Pr(>F)    
## datamanova2$Kelompok   3 0.0009933   30.811      9 17.187 7.356e-09 ***
## datamanova2$Perlakuan  3 0.0049308   15.030      9 17.187 1.752e-06 ***
## Residuals              9                                               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1