library(readxl)
Data_Manova = read_excel("D:/Praktikum R/Data Latihan/Data Manova.xlsx")
head(Data_Manova, n = 7)
data1 = Data_Manova[,-(1:2)]
x <- as.matrix(data1)
x
## Y1 Y2
## [1,] 6 7
## [2,] 5 9
## [3,] 4 6
## [4,] 6 6
## [5,] 4 7
## [6,] 5 4
## [7,] 6 4
xbar1 = matrix(data = c(mean(x[1:2,1]), mean(x[1:2,2])), nrow = 2)
xbar1
## [,1]
## [1,] 5.5
## [2,] 8.0
xbar2 = matrix(data = c(mean(x[3:5,1]), mean(x[3:5,2])), nrow = 2)
xbar2
## [,1]
## [1,] 4.666667
## [2,] 6.333333
xbar3 = matrix(data = c(mean(x[6:7,1]), mean(x[6:7,2])), nrow = 2)
xbar3
## [,1]
## [1,] 5.5
## [2,] 4.0
xbar = matrix(data = c(mean(x[,1]), mean(x[,2])), nrow = 2)
xbar
## [,1]
## [1,] 5.142857
## [2,] 6.142857
Jumlah Kuadrat Perlakuan
B = (2*(xbar1-xbar)%*%t(xbar1-xbar)) +
(3*(xbar2-xbar)%*%t(xbar2-xbar)) +
(2*(xbar3-xbar)%*%t(xbar3-xbar))
B
## [,1] [,2]
## [1,] 1.1904762 -0.4761905
## [2,] -0.4761905 16.1904762
Jumlah Kuadrat Galat
W = (x[1,1:2]-xbar1)%*%t(x[1,1:2]-xbar1) + (x[2,1:2]-xbar1)%*%t(x[2,1:2]-xbar1) +
(x[3,1:2]-xbar2)%*%t(x[3,1:2]-xbar2) + (x[4,1:2]-xbar2)%*%t(x[4,1:2]-xbar2) + (x[5,1:2]-xbar2)%*%t(x[5,1:2]-xbar2) +
(x[6,1:2]-xbar3)%*%t(x[6,1:2]-xbar3) + (x[7,1:2]-xbar3)%*%t(x[7,1:2]-xbar3)
W
## [,1] [,2]
## [1,] 3.666667 -1.666667
## [2,] -1.666667 2.666667
Jumlah Kuadrat Total
T = W + B
T
## [,1] [,2]
## [1,] 4.857143 -2.142857
## [2,] -2.142857 18.857143
datamanova1 <- Data_Manova[,-2]
uji <- manova(cbind(datamanova1$Y1, datamanova1$Y2) ~ datamanova1$Perlakuan, data = datamanova1)
uji
## Call:
## manova(cbind(datamanova1$Y1, datamanova1$Y2) ~ datamanova1$Perlakuan,
## data = datamanova1)
##
## Terms:
## datamanova1$Perlakuan Residuals
## resp 1 1.190476 3.666667
## resp 2 16.190476 2.666667
## Deg. of Freedom 2 4
##
## Residual standard errors: 0.9574271 0.8164966
## Estimated effects may be unbalanced
summary.manova(uji, test = "Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## datamanova1$Perlakuan 2 0.08046 3.7881 4 6 0.07187 .
## Residuals 4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Data_Manova_RAK <- read_excel("D:/Praktikum R/Data Latihan/Data Manova RAK.xlsx")
head(Data_Manova_RAK, n = 16)
datamanova2 =Data_Manova_RAK
Analisis Manova Dua Arah
uji2 <- manova(cbind(datamanova2$MAT, datamanova2$BI, datamanova2$IPA) ~
datamanova2$Kelompok + datamanova2$Perlakuan, data = datamanova2)
uji2
## Call:
## manova(cbind(datamanova2$MAT, datamanova2$BI, datamanova2$IPA) ~
## datamanova2$Kelompok + datamanova2$Perlakuan, data = datamanova2)
##
## Terms:
## datamanova2$Kelompok datamanova2$Perlakuan Residuals
## resp 1 811.5 651.5 77.0
## resp 2 288.5 693.0 125.5
## resp 3 540.6875 485.1875 13.0625
## Deg. of Freedom 3 3 9
##
## Residual standard errors: 2.924988 3.734226 1.204736
## Estimated effects may be unbalanced
summary.manova(uji2)
## Df Pillai approx F num Df den Df Pr(>F)
## datamanova2$Kelompok 3 1.9428 5.5133 9 27 0.0002539 ***
## datamanova2$Perlakuan 3 1.8051 4.5319 9 27 0.0010563 **
## Residuals 9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.manova(uji2, test = "Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## datamanova2$Kelompok 3 0.0009933 30.811 9 17.187 7.356e-09 ***
## datamanova2$Perlakuan 3 0.0049308 15.030 9 17.187 1.752e-06 ***
## Residuals 9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1