library(tidyverse)
library(timetk)

Pull data and process


raw_covid19_tbl <- read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv")


data_daily <- raw_covid19_tbl %>% 
  filter(state%in%c("Illinois", "Indiana", #Pull Midwestern states. 
                    "Iowa", "Wisconsin","Missouri")) %>% 
  group_by(state,date) %>% 
  summarise(cases=sum(cases),
            deaths=sum(deaths)) %>% 
  ungroup() %>%
  group_by(state) %>% 
  arrange(date,.by_group = TRUE) %>%
  mutate(cases_new = cases - lag(cases)) %>% #Compute daily deltas
  mutate(deaths_new = deaths - lag(deaths))  #Compute daily deltas

data_daily

Enter timetk Package

onvert data to weekly and summarize cases and deaths.

data_weekly <-data_daily %>% 
  summarise_by_time(.date_var=date, 
                    .by="week",
                    cases_new=sum(cases_new),
                    deaths_new=sum(deaths_new)) 


data_weekly
NA
data_weekly %>% 
  plot_time_series(date,cases_new, 
                   .smooth_period = "2 weeks",
                   .smooth_span=0.75,
                   .smooth_degree =1,
                   .smooth_message= T,
                   .facet_ncol = 3)




# try to facet the plot 
data_weekly %>% 
  plot_acf_diagnostics(date, deaths_new, .lags="3 months")
data_weekly %>%  
  drop_na() %>% 
  filter(state=="Illinois") %>% 
  plot_anomaly_diagnostics(date, deaths_new)
frequency = 11.5 observations per 1 quarter
trend = 13 observations per 3 months
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkodGltZXRrKQ0KYGBgDQoNCg0KIyBQdWxsIGRhdGEgYW5kIHByb2Nlc3MNCg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCg0KcmF3X2NvdmlkMTlfdGJsIDwtIHJlYWRfY3N2KCJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vbnl0aW1lcy9jb3ZpZC0xOS1kYXRhL21hc3Rlci91cy1jb3VudGllcy5jc3YiKQ0KDQoNCmRhdGFfZGFpbHkgPC0gcmF3X2NvdmlkMTlfdGJsICU+JSANCiAgZmlsdGVyKHN0YXRlJWluJWMoIklsbGlub2lzIiwgIkluZGlhbmEiLCAjUHVsbCBNaWR3ZXN0ZXJuIHN0YXRlcy4gDQogICAgICAgICAgICAgICAgICAgICJJb3dhIiwgIldpc2NvbnNpbiIsIk1pc3NvdXJpIikpICU+JSANCiAgZ3JvdXBfYnkoc3RhdGUsZGF0ZSkgJT4lIA0KICBzdW1tYXJpc2UoY2FzZXM9c3VtKGNhc2VzKSwNCiAgICAgICAgICAgIGRlYXRocz1zdW0oZGVhdGhzKSkgJT4lIA0KICB1bmdyb3VwKCkgJT4lDQogIGdyb3VwX2J5KHN0YXRlKSAlPiUgDQogIGFycmFuZ2UoZGF0ZSwuYnlfZ3JvdXAgPSBUUlVFKSAlPiUNCiAgbXV0YXRlKGNhc2VzX25ldyA9IGNhc2VzIC0gbGFnKGNhc2VzKSkgJT4lICNDb21wdXRlIGRhaWx5IGRlbHRhcw0KICBtdXRhdGUoZGVhdGhzX25ldyA9IGRlYXRocyAtIGxhZyhkZWF0aHMpKSAgI0NvbXB1dGUgZGFpbHkgZGVsdGFzDQoNCmRhdGFfZGFpbHkNCmBgYA0KDQoNCiMgRW50ZXIgYHRpbWV0a2AgUGFja2FnZQ0KDQpvbnZlcnQgZGF0YSB0byB3ZWVrbHkgYW5kIHN1bW1hcml6ZSBjYXNlcyBhbmQgZGVhdGhzLiANCg0KYGBge3J9DQpkYXRhX3dlZWtseSA8LWRhdGFfZGFpbHkgJT4lIA0KICBzdW1tYXJpc2VfYnlfdGltZSguZGF0ZV92YXI9ZGF0ZSwgDQogICAgICAgICAgICAgICAgICAgIC5ieT0id2VlayIsDQogICAgICAgICAgICAgICAgICAgIGNhc2VzX25ldz1zdW0oY2FzZXNfbmV3KSwNCiAgICAgICAgICAgICAgICAgICAgZGVhdGhzX25ldz1zdW0oZGVhdGhzX25ldykpIA0KDQoNCmRhdGFfd2Vla2x5DQoNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmRhdGFfd2Vla2x5ICU+JSANCiAgcGxvdF90aW1lX3NlcmllcyhkYXRlLGNhc2VzX25ldywgDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9wZXJpb2QgPSAiMiB3ZWVrcyIsDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9zcGFuPTAuNzUsDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9kZWdyZWUgPTEsDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9tZXNzYWdlPSBULA0KICAgICAgICAgICAgICAgICAgIC5mYWNldF9uY29sID0gMykNCg0KDQoNCiMgdHJ5IHRvIGZhY2V0IHRoZSBwbG90IA0KDQpgYGANCg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmRhdGFfd2Vla2x5ICU+JSANCiAgcGxvdF9hY2ZfZGlhZ25vc3RpY3MoZGF0ZSwgZGVhdGhzX25ldywgLmxhZ3M9IjMgbW9udGhzIikNCmBgYA0KDQoNCmBgYHtyfQ0KZGF0YV93ZWVrbHkgJT4lICANCiAgZHJvcF9uYSgpICU+JSANCiAgZmlsdGVyKHN0YXRlPT0iSWxsaW5vaXMiKSAlPiUgDQogIHBsb3RfYW5vbWFseV9kaWFnbm9zdGljcyhkYXRlLCBkZWF0aHNfbmV3KQ0KDQoNCmBgYA0KDQo=