library(tidyverse)
library(timetk)
Pull data and process
raw_covid19_tbl <- read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv")
data_daily <- raw_covid19_tbl %>%
filter(state%in%c("Illinois", "Indiana", #Pull Midwestern states.
"Iowa", "Wisconsin","Missouri")) %>%
group_by(state,date) %>%
summarise(cases=sum(cases),
deaths=sum(deaths)) %>%
ungroup() %>%
group_by(state) %>%
arrange(date,.by_group = TRUE) %>%
mutate(cases_new = cases - lag(cases)) %>% #Compute daily deltas
mutate(deaths_new = deaths - lag(deaths)) #Compute daily deltas
data_daily
Enter timetk Package
onvert data to weekly and summarize cases and deaths.
data_weekly <-data_daily %>%
summarise_by_time(.date_var=date,
.by="week",
cases_new=sum(cases_new),
deaths_new=sum(deaths_new))
data_weekly
NA
data_weekly %>%
plot_time_series(date,cases_new,
.smooth_period = "2 weeks",
.smooth_span=0.75,
.smooth_degree =1,
.smooth_message= T,
.facet_ncol = 3)
# try to facet the plot
data_weekly %>%
plot_acf_diagnostics(date, deaths_new, .lags="3 months")
data_weekly %>%
drop_na() %>%
filter(state=="Illinois") %>%
plot_anomaly_diagnostics(date, deaths_new)
frequency = 11.5 observations per 1 quarter
trend = 13 observations per 3 months
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkodGltZXRrKQ0KYGBgDQoNCg0KIyBQdWxsIGRhdGEgYW5kIHByb2Nlc3MNCg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCg0KcmF3X2NvdmlkMTlfdGJsIDwtIHJlYWRfY3N2KCJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vbnl0aW1lcy9jb3ZpZC0xOS1kYXRhL21hc3Rlci91cy1jb3VudGllcy5jc3YiKQ0KDQoNCmRhdGFfZGFpbHkgPC0gcmF3X2NvdmlkMTlfdGJsICU+JSANCiAgZmlsdGVyKHN0YXRlJWluJWMoIklsbGlub2lzIiwgIkluZGlhbmEiLCAjUHVsbCBNaWR3ZXN0ZXJuIHN0YXRlcy4gDQogICAgICAgICAgICAgICAgICAgICJJb3dhIiwgIldpc2NvbnNpbiIsIk1pc3NvdXJpIikpICU+JSANCiAgZ3JvdXBfYnkoc3RhdGUsZGF0ZSkgJT4lIA0KICBzdW1tYXJpc2UoY2FzZXM9c3VtKGNhc2VzKSwNCiAgICAgICAgICAgIGRlYXRocz1zdW0oZGVhdGhzKSkgJT4lIA0KICB1bmdyb3VwKCkgJT4lDQogIGdyb3VwX2J5KHN0YXRlKSAlPiUgDQogIGFycmFuZ2UoZGF0ZSwuYnlfZ3JvdXAgPSBUUlVFKSAlPiUNCiAgbXV0YXRlKGNhc2VzX25ldyA9IGNhc2VzIC0gbGFnKGNhc2VzKSkgJT4lICNDb21wdXRlIGRhaWx5IGRlbHRhcw0KICBtdXRhdGUoZGVhdGhzX25ldyA9IGRlYXRocyAtIGxhZyhkZWF0aHMpKSAgI0NvbXB1dGUgZGFpbHkgZGVsdGFzDQoNCmRhdGFfZGFpbHkNCmBgYA0KDQoNCiMgRW50ZXIgYHRpbWV0a2AgUGFja2FnZQ0KDQpvbnZlcnQgZGF0YSB0byB3ZWVrbHkgYW5kIHN1bW1hcml6ZSBjYXNlcyBhbmQgZGVhdGhzLiANCg0KYGBge3J9DQpkYXRhX3dlZWtseSA8LWRhdGFfZGFpbHkgJT4lIA0KICBzdW1tYXJpc2VfYnlfdGltZSguZGF0ZV92YXI9ZGF0ZSwgDQogICAgICAgICAgICAgICAgICAgIC5ieT0id2VlayIsDQogICAgICAgICAgICAgICAgICAgIGNhc2VzX25ldz1zdW0oY2FzZXNfbmV3KSwNCiAgICAgICAgICAgICAgICAgICAgZGVhdGhzX25ldz1zdW0oZGVhdGhzX25ldykpIA0KDQoNCmRhdGFfd2Vla2x5DQoNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmRhdGFfd2Vla2x5ICU+JSANCiAgcGxvdF90aW1lX3NlcmllcyhkYXRlLGNhc2VzX25ldywgDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9wZXJpb2QgPSAiMiB3ZWVrcyIsDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9zcGFuPTAuNzUsDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9kZWdyZWUgPTEsDQogICAgICAgICAgICAgICAgICAgLnNtb290aF9tZXNzYWdlPSBULA0KICAgICAgICAgICAgICAgICAgIC5mYWNldF9uY29sID0gMykNCg0KDQoNCiMgdHJ5IHRvIGZhY2V0IHRoZSBwbG90IA0KDQpgYGANCg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmRhdGFfd2Vla2x5ICU+JSANCiAgcGxvdF9hY2ZfZGlhZ25vc3RpY3MoZGF0ZSwgZGVhdGhzX25ldywgLmxhZ3M9IjMgbW9udGhzIikNCmBgYA0KDQoNCmBgYHtyfQ0KZGF0YV93ZWVrbHkgJT4lICANCiAgZHJvcF9uYSgpICU+JSANCiAgZmlsdGVyKHN0YXRlPT0iSWxsaW5vaXMiKSAlPiUgDQogIHBsb3RfYW5vbWFseV9kaWFnbm9zdGljcyhkYXRlLCBkZWF0aHNfbmV3KQ0KDQoNCmBgYA0KDQo=