1.使用princomp函数,对比将参数设置为cor=T OR F的结果

setwd("C:/Users/lenovo/Desktop")
X<-read.table("d7.2.txt",header=T)
attach(X)
cor(X)#变量之间相关性较强,适合做主成分分析
##           X1        X2        X3        X4        X5        X6        X7
## X1 1.0000000 0.2569697 0.7252526 0.3853672 0.8990457 0.8284572 0.7145260
## X2 0.2569697 1.0000000 0.4537807 0.5765121 0.3575064 0.5420120 0.4045314
## X3 0.7252526 0.4537807 1.0000000 0.5831419 0.7823418 0.8924742 0.7744004
## X4 0.3853672 0.5765121 0.5831419 1.0000000 0.4665789 0.6291140 0.6911234
## X5 0.8990457 0.3575064 0.7823418 0.4665789 1.0000000 0.8795439 0.7853531
## X6 0.8284572 0.5420120 0.8924742 0.6291140 0.8795439 1.0000000 0.8133081
## X7 0.7145260 0.4045314 0.7744004 0.6911234 0.7853531 0.8133081 1.0000000
## X8 0.7218909 0.6277509 0.7220538 0.6254195 0.7517683 0.8435436 0.7183218
##           X8
## X1 0.7218909
## X2 0.6277509
## X3 0.7220538
## X4 0.6254195
## X5 0.7517683
## X6 0.8435436
## X7 0.7183218
## X8 1.0000000
PCA1=princomp(X,cor=T)#主成分分析,用相关系数阵,标准化数据
PCA1#标准差代表yi的特征值开根号
## Call:
## princomp(x = X, cor = T)
## 
## Standard deviations:
##    Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6    Comp.7 
## 2.3877119 1.0142326 0.7101294 0.5222697 0.4314432 0.4015967 0.2955459 
##    Comp.8 
## 0.2415456 
## 
##  8  variables and  31 observations.
PCA2=princomp(X,cor=F)#主成分分析,用协方差矩阵,未标准化数据
PCA2#系数较大
## Call:
## princomp(x = X, cor = F)
## 
## Standard deviations:
##     Comp.1     Comp.2     Comp.3     Comp.4     Comp.5     Comp.6 
## 1129.24848  323.03218  199.26641  153.00821  138.80794   92.76297 
##     Comp.7     Comp.8 
##   68.40697   53.71349 
## 
##  8  variables and  31 observations.
summary(PCA1)
## Importance of components:
##                          Comp.1    Comp.2     Comp.3     Comp.4     Comp.5
## Standard deviation     2.387712 1.0142326 0.71012939 0.52226971 0.43144321
## Proportion of Variance 0.712646 0.1285835 0.06303547 0.03409571 0.02326791
## Cumulative Proportion  0.712646 0.8412295 0.90426494 0.93836065 0.96162855
##                            Comp.6     Comp.7      Comp.8
## Standard deviation     0.40159675 0.29554587 0.241545582
## Proportion of Variance 0.02015999 0.01091842 0.007293034
## Cumulative Proportion  0.98178855 0.99270697 1.000000000
summary(PCA2)#第一主成分解释度较好
## Importance of components:
##                              Comp.1       Comp.2       Comp.3       Comp.4
## Standard deviation     1129.2484798 323.03217820 199.26641417 153.00821309
## Proportion of Variance    0.8627261   0.07059687   0.02686347   0.01583884
## Cumulative Proportion     0.8627261   0.93332294   0.96018641   0.97602525
##                              Comp.5       Comp.6       Comp.7       Comp.8
## Standard deviation     138.80794361 92.762973040 68.406974154 53.713492273
## Proportion of Variance   0.01303535  0.005821611  0.003165881  0.001951914
## Cumulative Proportion    0.98906059  0.994882205  0.998048086  1.000000000
PCA1$loadings
## 
## Loadings:
##    Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## X1 -0.353 -0.429  0.175  0.299        -0.377  0.651       
## X2 -0.249  0.677  0.521        -0.399 -0.129  0.134       
## X3 -0.374               -0.789  0.261         0.116  0.372
## X4 -0.302  0.472 -0.628  0.225  0.249 -0.416              
## X5 -0.376 -0.324  0.123  0.127 -0.281 -0.267 -0.695  0.298
## X6 -0.404               -0.200  0.132        -0.156 -0.857
## X7 -0.371        -0.442        -0.584  0.535  0.166       
## X8 -0.374  0.118  0.282  0.409  0.522  0.546         0.141
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000
## Proportion Var  0.125  0.125  0.125  0.125  0.125  0.125  0.125  0.125
## Cumulative Var  0.125  0.250  0.375  0.500  0.625  0.750  0.875  1.000
PCA2$loadings#主成分载荷很多没显示
## 
## Loadings:
##    Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## X1 -0.710  0.539 -0.435        -0.117                     
## X2        -0.445 -0.276  0.615 -0.486 -0.261 -0.118 -0.155
## X3 -0.119 -0.169                0.301 -0.119 -0.889  0.236
## X4        -0.407 -0.247 -0.511 -0.399  0.579              
## X5 -0.530 -0.101  0.798        -0.217  0.117              
## X6 -0.394 -0.491 -0.160  0.114  0.658  0.111  0.308 -0.159
## X7 -0.162 -0.225        -0.571 -0.122 -0.746  0.154       
## X8        -0.124                              0.259  0.943
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000
## Proportion Var  0.125  0.125  0.125  0.125  0.125  0.125  0.125  0.125
## Cumulative Var  0.125  0.250  0.375  0.500  0.625  0.750  0.875  1.000
library(mvstats)
princomp.rank(PCA1,m=2,plot=T)

##             Comp.1     Comp.2          PC rank
## 北京   -6.12230233  1.5225207 -4.95377713    2
## 天津   -3.01010636  0.5367841 -2.46795766    5
## 河北    0.88750148  0.6923451  0.85767147   16
## 山西    1.10374781  0.6013737  1.02695901   19
## 内蒙古 -0.53334901  1.8477269 -0.16939720   10
## 辽宁   -0.09437659  0.6551539  0.02019052   11
## 吉林    0.32707448  1.4246843  0.49484615   13
## 黑龙江  1.68861172  0.9958838  1.58272699   28
## 上海   -7.08467075 -1.0693203 -6.16521342    1
## 江苏   -1.14131407 -0.4536945 -1.03621016    7
## 浙江   -3.82110679  0.1721339 -3.21073265    4
## 安徽    1.12338014 -0.3518062  0.89789520   17
## 福建   -1.17171809 -1.3776085 -1.20318881    6
## 江西    1.66938246 -0.5484835  1.33037759   26
## 山东   -0.48111168  0.8084609 -0.28399815    8
## 河南    1.27722788  0.6479033  1.18103447   21
## 湖北    1.00945390 -0.1165043  0.83734914   15
## 湖南    0.36506902  0.2007324  0.33994986   12
## 广东   -4.03195586 -2.4804874 -3.79481107    3
## 广西    1.62739176 -1.2305704  1.19054702   22
## 海南    1.87311537 -2.3528197  1.22717346   24
## 重庆   -0.39403198  0.4623324 -0.26313511    9
## 四川    1.15376310 -0.5180723  0.89822000   18
## 贵州    2.01403098 -0.6594701  1.60538145   29
## 云南    2.42950002 -0.4177647  1.99429039   30
## 西藏    2.72036533 -1.0105476  2.15008847   31
## 陕西    0.88797732  0.1169535  0.77012492   14
## 甘肃    1.32452136  0.1444992  1.14415281   20
## 青海    1.76845611  0.2089337  1.53008025   27
## 宁夏    1.31733038  0.4960324  1.19179348   23
## 新疆    1.31814288  1.0526951  1.27756871   25
princomp.rank(PCA2,m=1,plot=T)

##                             PC rank
## 北京   -2260.23573 -2260.23573    3
## 天津    -881.18567  -881.18567    5
## 河北     763.03936   763.03936   24
## 山西     835.11384   835.11384   26
## 内蒙古   498.54214   498.54214   19
## 辽宁     115.55714   115.55714    9
## 吉林     727.24553   727.24553   23
## 黑龙江  1044.15077  1044.15077   31
## 上海   -3629.69562 -3629.69562    1
## 江苏    -549.47579  -549.47579    7
## 浙江   -2105.72900 -2105.72900    4
## 安徽     343.49144   343.49144   15
## 福建    -874.55179  -874.55179    6
## 江西     662.25145   662.25145   22
## 山东     154.59504   154.59504   11
## 河南     916.00562   916.00562   29
## 湖北     293.37528   293.37528   13
## 湖南     308.83977   308.83977   14
## 广东   -2433.28370 -2433.28370    2
## 广西     385.01137   385.01137   17
## 海南     132.09115   132.09115   10
## 重庆     -89.77927   -89.77927    8
## 四川     178.58360   178.58360   12
## 贵州     624.15707   624.15707   21
## 云南     382.36226   382.36226   16
## 西藏     407.63299   407.63299   18
## 陕西     543.91420   543.91420   20
## 甘肃     802.07876   802.07876   25
## 青海     921.71498   921.71498   30
## 宁夏     898.28168   898.28168   28
## 新疆     885.90113   885.90113   27

  参数设置为cor=T,表示使用相关系数矩阵结果进行主成分分析,即将数据进行标准化。此时,按照累计方差贡献率需大于等于80%的原则,需要选出两个主成分;参数设置为cor=F,表示使用协方差矩阵结果进行主成分分析,不难看出,此时只需选定一个主成分即可。在综合得分排序时使用协方差矩阵的结果也与使用相关系数矩阵结果的主成分分析结果有一些不同。

2.用谱分解方法进行分析

未标准化数据

cov<-cov(d7.2)
e<-eigen(cov,symmetric=T)
e$value
## [1] 1317708.867  107828.114   41030.674   24191.897   19909.900    8891.801
## [7]    4835.498    2981.311
sqrt(e$value)
## [1] 1147.91501  328.37191  202.56030  155.53745  141.10245   94.29635
## [7]   69.53774   54.60138
e$vectors
##             [,1]       [,2]        [,3]         [,4]        [,5]
## [1,] -0.70954291  0.5390663 -0.43521118 -0.001876291  0.11702489
## [2,] -0.07029417 -0.4450158 -0.27598131 -0.615031769  0.48628388
## [3,] -0.11888696 -0.1689435 -0.03245231  0.073167828 -0.30116231
## [4,] -0.09219859 -0.4071370 -0.24702945  0.511323006  0.39909910
## [5,] -0.52980695 -0.1010012  0.79830426 -0.097734231  0.21745160
## [6,] -0.39382287 -0.4910485 -0.15965404 -0.113735783 -0.65780625
## [7,] -0.16166948 -0.2245413  0.01756632  0.570593282  0.12190802
## [8,] -0.08392865 -0.1237633 -0.09623489 -0.082844149  0.07070014
##             [,6]        [,7]         [,8]
## [1,] -0.00664234  0.03982262 -0.034918618
## [2,] -0.26100921  0.11761063 -0.155434379
## [3,] -0.11872592  0.88918196  0.235538025
## [4,]  0.57937677  0.08219183 -0.039383367
## [5,]  0.11718826  0.03442519  0.007635471
## [6,]  0.11058302 -0.30823184 -0.159389887
## [7,] -0.74554493 -0.15397686 -0.056135935
## [8,] -0.01605792 -0.25938582  0.942855744
as.matrix(d7.2) %*%e$vectors#Y矩阵
##             [,1]       [,2]       [,3]        [,4]     [,5]      [,6]
## 北京   -6271.737 -472.14218 -1478.7720  -47.721642 670.0846 -197.4040
## 天津   -4892.687  -80.69336 -1680.0065  468.804807 642.5301 -440.8240
## 河北   -3248.461 -142.58568 -1052.8677  161.459560 730.6497 -325.9395
## 山西   -3176.387 -287.80663  -952.9766   27.908060 602.0532 -487.2531
## 内蒙古 -3512.959 -480.82319 -1140.9499 -208.459846 700.9511 -473.6798
## 辽宁   -3895.944  128.15536 -1424.9970  192.599398 818.0546 -381.6057
## 吉林   -3284.255 -251.59105 -1253.5557  143.034021 790.3206 -451.8751
## 黑龙江 -2967.350 -142.87870 -1189.9996    8.172715 651.5781 -302.3414
## 上海   -7641.196  165.85432 -1230.5422 -188.637492 583.0494 -407.1886
## 江苏   -4560.977   35.31018 -1425.7811   18.149052 319.9015 -395.0486
## 浙江   -6117.230  -80.43122 -1145.7491 -245.495957 692.1764 -330.7203
## 安徽   -3668.009  222.85883 -1365.1952   -6.957738 467.6136 -398.1544
## 福建   -4886.053  391.30589 -1233.3928   86.680723 557.8603 -659.8796
## 江西   -3349.249  305.33829 -1342.2211 -119.420965 424.4819 -460.7248
## 山东   -3856.906 -227.33267 -1061.3222  -63.375078 712.8425 -495.6177
## 河南   -3095.495 -119.36938 -1120.7817  -53.671806 602.3980 -388.7157
## 湖北   -3718.126  226.61657 -1406.8402  -88.134677 538.4257 -470.1937
## 湖南   -3702.661  -43.40191 -1309.8025  -18.580840 457.1074 -367.0418
## 广东   -6444.785  253.07907  -608.0827  206.794612 572.2519 -427.8501
## 广西   -3626.489  411.41245 -1245.4843  127.464766 415.1013 -315.9280
## 海南   -3879.410  654.40143  -830.3841  228.024851 548.1847 -268.6813
## 重庆   -4101.280   64.21307 -1443.1986  -11.589613 651.8433 -438.0735
## 四川   -3832.917  397.68453 -1287.4281 -140.710939 575.5561 -321.1221
## 贵州   -3387.344  263.03119 -1175.8815 -167.166245 428.9832 -428.4575
## 云南   -3629.139  609.53498 -1244.3362   -3.613962 857.7951 -220.6917
## 西藏   -3603.868 1032.87564 -1388.8594 -193.249168 902.7327 -452.9071
## 陕西   -3467.587  -36.18118 -1290.7885   40.858539 421.1680 -313.2432
## 甘肃   -3209.422  -33.92919 -1146.2330  -53.411235 470.2348 -357.5851
## 青海   -3089.786   46.95751 -1181.3101  -55.270695 508.7677 -241.8020
## 宁夏   -3113.219  -51.16864 -1116.2861   61.118194 670.9278 -448.3887
## 新疆   -3125.600  -99.47641 -1142.9285 -188.221320 711.5164 -388.0790
##            [,7]          [,8]
## 北京   338.1326  -46.93540207
## 天津   262.7464  -68.06335480
## 河北   329.1848  -88.64297392
## 山西   200.4013 -153.73040440
## 内蒙古 223.8099  -13.10436469
## 辽宁   170.3246  -55.07060619
## 吉林   134.9042  -52.41184623
## 黑龙江 136.3281  -90.64088177
## 上海   199.0403   13.60840001
## 江苏   224.6134 -113.97505321
## 浙江   141.7991 -216.26974579
## 安徽   159.9425 -107.00704251
## 福建   220.8554  -95.38599704
## 江西   325.3652  -43.25605156
## 山东   354.3797 -106.08449797
## 河南   311.9963  -57.90190734
## 湖北   283.9291 -165.29453809
## 湖南   262.1497 -104.05884628
## 广东   264.6169  -80.14799721
## 广西   206.5708  -70.16690022
## 海南   307.4828  -61.60926534
## 重庆   413.6344 -167.50485784
## 四川   333.1896  -80.74317703
## 贵州   206.5979 -110.47488954
## 云南   213.7375 -194.85291383
## 西藏   230.0083   -0.08183429
## 陕西   177.1975  -76.73062051
## 甘肃   211.8872  -19.80288724
## 青海   246.9396  -17.17355476
## 宁夏   252.4040  -60.43164552
## 新疆   275.6191  -56.70631902
PCA2$scores
##             Comp.1     Comp.2      Comp.3       Comp.4       Comp.5
## 北京   -2260.23573 -557.91050 -255.644483   45.0564829  -66.9510339
## 天津    -881.18567 -166.46168 -456.878957 -471.4699657  -39.3964785
## 河北     763.03936 -228.35400  170.259894 -164.1247187 -127.5160847
## 山西     835.11384 -373.57495  270.150955  -30.5732191    1.0803799
## 内蒙古   498.54214 -566.59151   82.177656  205.7946873  -97.8174958
## 辽宁     115.55714   42.38704 -201.869472 -195.2645563 -214.9210304
## 吉林     727.24553 -337.35937  -30.428196 -145.6991797 -187.1870151
## 黑龙江  1044.15077 -228.64702   33.127990  -10.8378738  -48.4444953
## 上海   -3629.69562   80.08600   -7.414618  185.9723329   20.0841998
## 江苏    -549.47579  -50.45814 -202.653513  -20.8142110  283.2320983
## 浙江   -2105.72900 -166.19954   77.378498  242.8307979  -89.0428120
## 安徽     343.49144  137.09051 -142.067683    4.2925793  135.5200262
## 福建    -874.55179  305.53757  -10.265277  -89.3458819   45.2733419
## 江西     662.25145  219.56997 -119.093518  116.7558060  178.6516688
## 山东     154.59504 -313.10099  161.805374   60.7099195 -109.7088962
## 河南     916.00562 -205.13770  102.345863   51.0066471    0.7356478
## 湖北     293.37528  140.84825 -183.712673   85.4695181   64.7079136
## 湖南     308.83977 -129.17023  -86.674968   15.9156818  146.0262432
## 广东   -2433.28370  167.31075  615.044824 -209.4597710   30.8817316
## 广西     385.01137  325.64413  -22.356707 -130.1299250  188.0322680
## 海南     132.09115  568.63311  392.743464 -230.6900093   54.9488917
## 重庆     -89.77927  -21.55525 -220.071029    8.9244546  -48.7097217
## 四川     178.58360  311.91621  -64.300519  138.0457799   27.5775302
## 贵州     624.15707  177.26287   47.246060  164.5010868  174.1504466
## 云南     382.36226  523.76666  -21.208660    0.9488038 -254.6615081
## 西藏     407.63299  947.10732 -165.731842  190.5840098 -299.5991385
## 陕西     543.91420 -121.94950  -67.660963  -43.5236976  181.9655865
## 甘肃     802.07876 -119.69751   76.894550   50.7460765  132.8988383
## 青海     921.71498  -38.81081   41.817440   52.6055358   94.3659203
## 宁夏     898.28168 -136.93696  106.841432  -63.7833522  -67.7942401
## 新疆     885.90113 -185.24473   80.199078  185.5561613 -108.3827824
##              Comp.6      Comp.7      Comp.8
## 北京    191.5320286  -92.333008   35.666275
## 天津    -51.8879304  -16.946794   14.538322
## 河北     62.9965279  -83.385211   -6.041297
## 山西    -98.3170619   45.398326  -71.128728
## 内蒙古  -84.7437593   21.989712   69.497312
## 辽宁      7.3303443   75.475026   27.531070
## 吉林    -62.9390772  110.895380   30.189830
## 黑龙江   86.5946640  109.471482   -8.039205
## 上海    -18.2525273   46.759317   96.210077
## 江苏     -6.1125618   21.186198  -31.373377
## 浙江     58.2157431  104.000569 -133.668069
## 安徽     -9.2183518   85.857123  -24.405366
## 福建   -270.9435385   24.944182  -12.784320
## 江西    -71.7888071  -79.565585   39.345625
## 山东   -106.6817020 -108.580089  -23.482821
## 河南      0.2203520  -66.196634   24.699769
## 湖北    -81.2576930  -38.129509  -82.692861
## 湖南     21.8941870  -16.350061  -21.457170
## 广东    -38.9140659  -18.817239    2.453679
## 广西     73.0080625   39.228844   12.434776
## 海南    120.2547641  -61.683173   20.992411
## 重庆    -49.1374375 -167.834790  -84.903181
## 四川     67.8139494  -87.390018    1.858500
## 贵州    -39.5214378   39.201724  -27.873213
## 云南    168.2442936   32.062078 -112.251237
## 西藏    -63.9710810   15.791352   82.519842
## 陕西     75.6928007   68.602119    5.871056
## 甘肃     31.3509370   33.912467   62.798789
## 青海    147.1340420   -1.139974   65.428122
## 宁夏    -59.4526500   -6.604354   22.170031
## 新疆      0.8569861  -29.819461   25.895358
数据标准化之后
sd7.2<-scale(d7.2)#
covv<-cov(sd7.2)
ee<-eigen(covv,symmetric=T)
ee$value
## [1] 5.70116807 1.02866772 0.50428374 0.27276565 0.18614324 0.16127995
## [7] 0.08734736 0.05834427
diag(sqrt(ee$value))
##          [,1]     [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
## [1,] 2.387712 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [2,] 0.000000 1.014233 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## [3,] 0.000000 0.000000 0.7101294 0.0000000 0.0000000 0.0000000 0.0000000
## [4,] 0.000000 0.000000 0.0000000 0.5222697 0.0000000 0.0000000 0.0000000
## [5,] 0.000000 0.000000 0.0000000 0.0000000 0.4314432 0.0000000 0.0000000
## [6,] 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.4015967 0.0000000
## [7,] 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.2955459
## [8,] 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
##           [,8]
## [1,] 0.0000000
## [2,] 0.0000000
## [3,] 0.0000000
## [4,] 0.0000000
## [5,] 0.0000000
## [6,] 0.0000000
## [7,] 0.0000000
## [8,] 0.2415456
ee$vectors
##            [,1]        [,2]        [,3]        [,4]       [,5]        [,6]
## [1,] -0.3530160 -0.42913372  0.17506584  0.29900682  0.0016050 -0.37676548
## [2,] -0.2494594  0.67707366  0.52110127 -0.09613622 -0.3991862 -0.12923592
## [3,] -0.3738401 -0.08881424 -0.07173444 -0.78926796  0.2609431  0.06375756
## [4,] -0.3016294  0.47157654 -0.62799220  0.22489321  0.2492672 -0.41577639
## [5,] -0.3760539 -0.32423582  0.12307893  0.12696200 -0.2808157 -0.26739703
## [6,] -0.4040134 -0.06946256  0.09017054 -0.19986045  0.1315060 -0.08849495
## [7,] -0.3709635 -0.05611496 -0.44195504  0.06921165 -0.5843723  0.53528642
## [8,] -0.3743738  0.11849177  0.28227996  0.40862952  0.5222835  0.54639431
##             [,7]        [,8]
## [1,]  0.65135285  0.07039520
## [2,]  0.13386770  0.06767919
## [3,]  0.11648213  0.37221164
## [4,] -0.03626539  0.07324460
## [5,] -0.69498247  0.29803953
## [6,] -0.15611394 -0.85695769
## [7,]  0.16637806 -0.05846782
## [8,] -0.08877945  0.14119220
sd7.2 %*%ee$vectors#Y矩阵
##               [,1]       [,2]          [,3]        [,4]        [,5]
## 北京   -6.02274607  1.4977627 -0.0006871739 -0.16391109  0.79502001
## 天津   -2.96115828  0.5280553 -1.9513295787  0.23628153  0.22209825
## 河北    0.87306960  0.6810867 -0.9914908511 -0.18032321 -0.07035523
## 山西    1.08579949  0.5915946 -0.3666618862 -0.27837354 -0.81949926
## 内蒙古 -0.52467609  1.8176806  0.8905192709  0.02118982 -0.11409306
## 辽宁   -0.09284191  0.6445003 -0.7208770816  1.06639086  0.02201026
## 吉林    0.32175584  1.4015172 -0.6018210432  0.86149578 -0.27109466
## 黑龙江  1.66115278  0.9796895 -0.2051386719  0.57671770  0.08006449
## 上海   -6.96946517 -1.0519318  1.2773562523  0.47039265  0.36513503
## 江苏   -1.12275488 -0.4463169 -0.0896687938 -0.55598134  0.29151819
## 浙江   -3.75897083  0.1693347  0.8772435556  0.37591228 -0.73052101
## 安徽    1.10511258 -0.3460854  0.0891491147  0.13804480  0.08563301
## 福建   -1.15266449 -1.3552068 -0.0039062405 -0.06991405 -0.75996923
## 江西    1.64223622 -0.5395645  0.6532926862 -0.72904723  0.32177245
## 山东   -0.47328821  0.7953144  0.0998177113 -0.65486444 -0.61640125
## 河南    1.25645857  0.6373676  0.0886737948 -0.44624987  0.07817857
## 湖北    0.99303892 -0.1146098  0.3215625962 -0.53120541 -0.40191131
## 湖南    0.35913254  0.1974682 -0.0514180753 -0.49067727  0.19581667
## 广东   -3.96639124 -2.4401516 -0.7904133404 -0.09605024 -0.48064261
## 广西    1.60092834 -1.2105598 -0.4894787764  0.05720286  0.50872627
## 海南    1.84265618 -2.3145599 -0.9877987233 -0.01609807  0.29572783
## 重庆   -0.38762452  0.4548143 -0.1673779595 -0.90974825 -0.37859619
## 四川    1.13500148 -0.5096478  0.5968162283 -0.32914890  0.31433573
## 贵州    1.98128033 -0.6487463  0.7514554478 -0.31841016 -0.08773246
## 云南    2.38999332 -0.4109714 -0.1730464102  0.88871466 -0.34815123
## 西藏    2.67612880 -0.9941148  1.3934198622  1.24423286 -0.01023678
## 陕西    0.87353770  0.1150517 -0.2617342408 -0.02537647  0.47640866
## 甘肃    1.30298299  0.1421495  0.2420791861 -0.08821778  0.47877789
## 青海    1.73969881  0.2055362  0.1551351630 -0.01382864  0.81194277
## 宁夏    1.29590895  0.4879663 -0.3017998447  0.01458779 -0.19953635
## 新疆    1.29670824  1.0355770  0.7181278224 -0.05373765 -0.05442545
##                [,6]         [,7]         [,8]
## 北京   -0.607016797  0.030533312  0.194482609
## 天津    0.290678906  0.679090704  0.001188019
## 河北   -0.246650021 -0.226660578  0.325268532
## 山西    0.182777166 -0.333579876 -0.196914532
## 内蒙古  0.575893319 -0.272300579  0.127756689
## 辽宁    0.120810958  0.234838381  0.038193070
## 吉林    0.499647897 -0.063569439 -0.056866191
## 黑龙江 -0.073313761 -0.286449976 -0.250789466
## 上海    0.329072083 -0.056652481  0.046159677
## 江苏    0.053493226  0.218739240 -0.428148819
## 浙江   -0.809968015 -0.223735812 -0.429083237
## 安徽    0.090533718  0.146935766 -0.393879327
## 福建    0.738723928  0.389656932 -0.059220257
## 江西    0.305596948  0.277557669  0.087747544
## 山东    0.045424193 -0.071122651  0.330066469
## 河南    0.082593962 -0.163483049  0.202399769
## 湖北   -0.217913070  0.411249415 -0.152242142
## 湖南   -0.073658171  0.051161084 -0.177050148
## 广东    0.159700082 -0.598755027  0.209905025
## 广西    0.019841346  0.002684683 -0.215956347
## 海南   -0.261516365 -0.371217541  0.293149328
## 重庆   -0.533041258  0.519716499  0.227454984
## 四川   -0.408091243  0.140470293  0.183892081
## 贵州    0.086599315 -0.039920012 -0.279832631
## 云南   -1.184964470  0.074604613 -0.014614089
## 西藏    0.132667658  0.474353950  0.451341524
## 陕西    0.067108289 -0.111347823 -0.355857206
## 甘肃    0.360890497 -0.264751563 -0.085831174
## 青海   -0.052583663 -0.287309010  0.023669653
## 宁夏    0.319152039 -0.105666399  0.143746587
## 新疆    0.007511306 -0.175070723  0.209864008
PCA1$scores
##             Comp.1     Comp.2       Comp.3      Comp.4      Comp.5
## 北京   -6.12230233  1.5225207 -0.000698533 -0.16662054  0.80816173
## 天津   -3.01010636  0.5367841 -1.983585145  0.24018727  0.22576954
## 河北    0.88750148  0.6923451 -1.007880240 -0.18330396 -0.07151821
## 山西    1.10374781  0.6013737 -0.372722824 -0.28297507 -0.83304562
## 内蒙古 -0.53334901  1.8477269  0.905239595  0.02154009 -0.11597902
## 辽宁   -0.09437659  0.6551539 -0.732793213  1.08401835  0.02237409
## 吉林    0.32707448  1.4246843 -0.611769172  0.87573634 -0.27557587
## 黑龙江  1.68861172  0.9958838 -0.208529623  0.58625087  0.08138796
## 上海   -7.08467075 -1.0693203  1.298471009  0.47816826  0.37117073
## 江苏   -1.14131407 -0.4536945 -0.091151023 -0.56517173  0.29633699
## 浙江   -3.82110679  0.1721339  0.891744431  0.38212613 -0.74259655
## 安徽    1.12338014 -0.3518062  0.090622754  0.14032668  0.08704853
## 福建   -1.17171809 -1.3776085 -0.003970811 -0.07106973 -0.77253155
## 江西    1.66938246 -0.5484835  0.664091644 -0.74109841  0.32709137
## 山东   -0.48111168  0.8084609  0.101467703 -0.66568938 -0.62659039
## 河南    1.27722788  0.6479033  0.090139577 -0.45362641  0.07947087
## 湖北    1.00945390 -0.1165043  0.326878041 -0.53998626 -0.40855492
## 湖南    0.36506902  0.2007324 -0.052268018 -0.49878819  0.19905353
## 广东   -4.03195586 -2.4804874 -0.803478909 -0.09763795 -0.48858766
## 广西    1.62739176 -1.2305704 -0.497569883  0.05814843  0.51713554
## 海南    1.87311537 -2.3528197 -1.004127081 -0.01636417  0.30061623
## 重庆   -0.39403198  0.4623324 -0.170144725 -0.92478643 -0.38485441
## 四川    1.15376310 -0.5180723  0.606681628 -0.33458975  0.31953171
## 贵州    2.01403098 -0.6594701  0.763877040 -0.32367349 -0.08918268
## 云南    2.42950002 -0.4177647 -0.175906875  0.90340516 -0.35390619
## 西藏    2.72036533 -1.0105476  1.416453156  1.26480009 -0.01040599
## 陕西    0.88797732  0.1169535 -0.266060720 -0.02579594  0.48428371
## 甘肃    1.32452136  0.1444992  0.246080766 -0.08967602  0.48669211
## 青海    1.76845611  0.2089337  0.157699554 -0.01405723  0.82536422
## 宁夏    1.31733038  0.4960324 -0.306788610  0.01482892 -0.20283469
## 新疆    1.31814288  1.0526951  0.729998508 -0.05462593 -0.05532510
##              Comp.6       Comp.7       Comp.8
## 北京   -0.617050813  0.031038029  0.197697415
## 天津    0.295483841  0.690316105  0.001207657
## 河北   -0.250727157 -0.230407287  0.330645235
## 山西    0.185798481 -0.339093966 -0.200169538
## 内蒙古  0.585412862 -0.276801720  0.129868512
## 辽宁    0.122807969  0.238720270  0.038824403
## 吉林    0.507907099 -0.064620245 -0.057806192
## 黑龙江 -0.074525640 -0.291185007 -0.254935028
## 上海    0.334511659 -0.057588949  0.046922699
## 江苏    0.054377471  0.222355009 -0.435226138
## 浙江   -0.823356823 -0.227434176 -0.436176003
## 安徽    0.092030244  0.149364621 -0.400390171
## 福建    0.750935068  0.396097979 -0.060199171
## 江西    0.310648480  0.282145710  0.089198015
## 山东    0.046175057 -0.072298312  0.335522483
## 河南    0.083959244 -0.166185432  0.205745446
## 湖北   -0.221515183  0.418047386 -0.154758712
## 湖南   -0.074875744  0.052006779 -0.179976795
## 广东    0.162339932 -0.608652475  0.213374764
## 广西    0.020169324  0.002729061 -0.219526115
## 海南   -0.265839242 -0.377353784  0.297995100
## 重庆   -0.541852454  0.528307436  0.231214825
## 四川   -0.414837010  0.142792274  0.186931825
## 贵州    0.088030805 -0.040579891 -0.284458277
## 云南   -1.204551986  0.075837831 -0.014855661
## 西藏    0.134860660  0.482195042  0.458802220
## 陕西    0.068217592 -0.113188407 -0.361739542
## 甘肃    0.366856033 -0.269127919 -0.087249967
## 青海   -0.053452873 -0.292058241  0.024060914
## 宁夏    0.324427636 -0.107413069  0.146122725
## 新疆    0.007635468 -0.177964650  0.213333070

3.验证yi与yj之间的协方差=0

var(as.matrix(d7.2)%*%as.matrix(e$vectors))#未标准化数据
##               [,1]          [,2]          [,3]          [,4]          [,5]
## [1,]  1.317709e+06  5.423734e-10 -3.632969e-10  2.897404e-11  2.159107e-10
## [2,]  5.423734e-10  1.078281e+05 -1.956206e-10  4.326672e-11 -9.722534e-12
## [3,] -3.632969e-10 -1.956206e-10  4.103067e+04 -5.564269e-11  1.301448e-11
## [4,]  2.897404e-11  4.326672e-11 -5.564269e-11  2.419190e+04  2.702135e-12
## [5,]  2.159107e-10 -9.722534e-12  1.301448e-11  2.702135e-12  1.990990e+04
## [6,] -1.833271e-11 -1.048812e-11 -1.572549e-12 -3.339366e-11  1.682555e-11
## [7,]  5.396128e-11  3.576091e-11 -1.490642e-11  1.234060e-11 -1.784717e-11
## [8,] -7.006780e-12  1.660581e-11  6.830936e-12 -1.093494e-11  4.108343e-12
##               [,6]          [,7]          [,8]
## [1,] -1.833271e-11  5.396128e-11 -7.006780e-12
## [2,] -1.048812e-11  3.576091e-11  1.660581e-11
## [3,] -1.572549e-12 -1.490642e-11  6.830936e-12
## [4,] -3.339366e-11  1.234060e-11 -1.093494e-11
## [5,]  1.682555e-11 -1.784717e-11  4.108343e-12
## [6,]  8.891801e+03  1.953106e-11 -2.481203e-12
## [7,]  1.953106e-11  4.835498e+03  3.445022e-13
## [8,] -2.481203e-12  3.445022e-13  2.981311e+03
var(as.matrix(sd7.2)%*%as.matrix(ee$vectors))#标准化数据
##               [,1]          [,2]          [,3]          [,4]          [,5]
## [1,]  5.701168e+00 -1.204032e-15  3.446010e-16 -1.918412e-16 -4.413871e-16
## [2,] -1.204032e-15  1.028668e+00 -2.466180e-16 -1.012089e-16  1.683099e-16
## [3,]  3.446010e-16 -2.466180e-16  5.042837e-01 -7.534110e-17  2.229315e-16
## [4,] -1.918412e-16 -1.012089e-16 -7.534110e-17  2.727656e-01 -3.087761e-16
## [5,] -4.413871e-16  1.683099e-16  2.229315e-16 -3.087761e-16  1.861432e-01
## [6,] -5.658161e-16  3.318076e-16  9.573573e-17  2.366053e-16  1.456191e-17
## [7,]  6.643431e-16 -1.454385e-16 -1.643267e-16  7.478050e-17  1.127247e-16
## [8,]  1.202019e-16  1.956750e-16 -2.409459e-17 -4.391750e-17 -8.071103e-17
##               [,6]          [,7]          [,8]
## [1,] -5.658161e-16  6.643431e-16  1.202019e-16
## [2,]  3.318076e-16 -1.454385e-16  1.956750e-16
## [3,]  9.573573e-17 -1.643267e-16 -2.409459e-17
## [4,]  2.366053e-16  7.478050e-17 -4.391750e-17
## [5,]  1.456191e-17  1.127247e-16 -8.071103e-17
## [6,]  1.612799e-01 -8.299693e-17 -1.304569e-16
## [7,] -8.299693e-17  8.734736e-02 -2.945077e-17
## [8,] -1.304569e-16 -2.945077e-17  5.834427e-02

  无论是未标准化的数据还是标准化后的数据,由协方差矩阵均可知,对角线上的值等于X谱分解后的特征值,而其他元素近似于0,即命题得证。

4.验证Y与X的方差和相等

sum(diag(cov))
## [1] 1527378
sum(var(as.matrix(d7.2)%*%as.matrix(e$vectors)))
## [1] 1527378
sum(diag(covv))
## [1] 8
sum(var(as.matrix(sd7.2)%*%as.matrix(ee$vectors)))
## [1] 8

  由此可得,可证明Y矩阵与X矩阵的方差和相等。

5.验证相关系数公式

y<-as.matrix(d7.2)%*%as.matrix(e$vectors)
cor(y[,1],d7.2[,1]) 
## [1] -0.971572
cov.eigen=eigen(cov(d7.2))
sqrt(cov.eigen$values[1])*cov.eigen$vector[1,1]/sqrt(var(d7.2[,1]))
## [1] -0.971572

  由此可得,相关系数公式成立。