Moving 12-Month Total Vehicle Miles Traveled (M12MTVUSM227NFWA)

indicator <-fredr_series_observations(series_id = "M12MTVUSM227NFWA",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2016-01-01 3101553
2016-07-01 3141648
2016-08-01 3148652
2017-04-01 3186368
2017-05-01 3189660
2018-02-01 3216597
2018-12-01 3240325
2019-05-01 3252151
2019-07-01 3255029
2020-07-01 2970035
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Moving 12-Month Total Vehicle Miles Traveled_ Total", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Vehicle Miles Traveled (TRFVOLUSM227NFWA)

indicator <-fredr_series_observations(series_id = "TRFVOLUSM227NFWA",
        observation_start = as.Date("2019-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2019-01-01 248210
2019-03-01 271461
2019-05-01 286018
2019-06-01 280938
2019-08-01 286587
2019-09-01 271696
2020-01-01 253621
2020-02-01 231843
2020-03-01 220101
2020-04-01 168499
indicator %>% ggplot() + 
  geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+  
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Vehicle Miles Traveled", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Load Factor for U.S. Air Carrier Domestic and International, Scheduled Passenger Flights (LOADFACTOR)

indicator <-fredr_series_observations(series_id = "LOADFACTOR",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","percent")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date percent
2001-11-01 66.9
2002-11-01 67.6
2004-06-01 81.5
2008-01-01 74.0
2011-09-01 81.9
2012-03-01 83.0
2012-04-01 82.5
2016-01-01 80.2
2016-08-01 84.6
2020-06-01 54.1
indicator %>% ggplot() + 
   
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
  geom_line(mapping = aes(x=date,y=percent), color = "blue4",size=1) +
  labs(title = "U.S. Air Passenger _ Load Factor", 
       subtitle = str_glue("Domestic & International\nFrom {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Percent of load",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=percent), color = "blue4",size=1) +
  labs(title = "U.S. Air Passenger _ Load Factor", 
       subtitle = "May 2019 to May 2020",
       x="Time", y="Percent of load",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

## Public Transit Ridership (TRANSIT)

indicator <-fredr_series_observations(series_id = "TRANSIT",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2001-03-01 846702
2001-06-01 807301
2005-05-01 806149
2007-10-01 946754
2011-10-01 919419
2012-08-01 893072
2013-05-01 908338
2013-09-01 900750
2015-04-01 901828
2016-08-01 864510
2017-09-01 844867
2018-12-01 763263
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
   geom_line(mapping = aes(x=date,y=value), color = "blue4",size=1) +
  labs(title = "Public Transit Ridership", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of trip tickets",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value), color = "blue4",size=1) +
  labs(title = "Public Transit Ridership", 
       subtitle = "Most recent 12 months",
       x="Time", y="Thousands of trip tickets",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Rail Passenger Miles (RAILPM)

indicator <-fredr_series_observations(series_id = "RAILPM",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2001-08-01 562266005
2009-04-01 469783200
2010-03-01 538675366
2013-06-01 638602721
2013-09-01 517765302
2014-03-01 542911331
2014-04-01 545773080
2014-08-01 649665562
2015-01-01 458200128
2017-07-01 667515087
2018-01-01 438710211
2018-07-01 655798387
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
   geom_line(mapping = aes(x=date,y=value/1000000), color = "blue4",size=1) +
  labs(title = "Rail Passenger Miles", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value/1000000), color = "blue4",size=1) +
  labs(title = "Rail Passenger Miles", 
       subtitle = "Most recent 12 months",
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Air Revenue Passenger Miles (AIRRPMTSID11)

indicator <-fredr_series_observations(series_id = "AIRRPMTSID11",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2000-08-01 58870677
2000-09-01 61815896
2001-03-01 59252860
2001-10-01 45715767
2006-04-01 67955569
2012-01-01 68847324
2012-06-01 69241615
2012-11-01 69557561
2013-03-01 70132032
2014-05-01 72509487
2015-01-01 73804165
2017-04-01 80742832
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
   geom_line(mapping = aes(x=date,y=value/1000), color = "blue4",size=1) +
  labs(title = "Air Revenue Passenger Miles (RPM) _ AIRRPMTSID11", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions",
       caption = "Data source: FRED St. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
    geom_line(mapping = aes(x=date,y=value/1000), color = "blue4",size=1) +
  labs(title = "Air Revenue Passenger Miles (RMP) _ AIRRPMTSID11", 
       subtitle = "Most recent 12 months period",
       x="Time", y="Millions",
       caption = "Data source: FRED St. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()