# Load packages
library(tidyquant) 
library(tidyverse) 

Q1 dividends Import dividends of Costco and Target since 2000.

mult_stocks <- tq_get(c("COST", "TGT"),
                      get  = "dividends",
                      from = "2000-01-01")
mult_stocks
## # A tibble: 152 x 3
##    symbol date       value
##    <chr>  <date>     <dbl>
##  1 COST   2004-05-06 0.1  
##  2 COST   2004-07-21 0.1  
##  3 COST   2004-11-03 0.1  
##  4 COST   2005-02-04 0.1  
##  5 COST   2005-05-04 0.115
##  6 COST   2005-08-03 0.115
##  7 COST   2005-11-16 0.115
##  8 COST   2006-02-07 0.115
##  9 COST   2006-05-08 0.13 
## 10 COST   2006-07-28 0.13 
## # ... with 142 more rows

Q2 economic data Import the U.S. Industrial Production Index since 2010.

Production <- tq_get("INDPRO", get = "economic.data", from = "2010-01-01")
Production
## # A tibble: 128 x 3
##    symbol date       price
##    <chr>  <date>     <dbl>
##  1 INDPRO 2010-01-01  91.7
##  2 INDPRO 2010-02-01  92.0
##  3 INDPRO 2010-03-01  92.6
##  4 INDPRO 2010-04-01  92.9
##  5 INDPRO 2010-05-01  94.3
##  6 INDPRO 2010-06-01  94.4
##  7 INDPRO 2010-07-01  94.9
##  8 INDPRO 2010-08-01  95.1
##  9 INDPRO 2010-09-01  95.4
## 10 INDPRO 2010-10-01  95.1
## # ... with 118 more rows

Q3 stock prices Import stock prices of NASDAQ, Dow Jones Industrial Average, and S&P500 since 2019.

stocks <- tq_get(c("^GSPC","^DJI","^IXIC"),
                 get = "stock.prices",
                 from = "2019-01-01")
stocks
## # A tibble: 1,335 x 8
##    symbol date        open  high   low close     volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>      <dbl>    <dbl>
##  1 ^GSPC  2019-01-02 2477. 2519. 2467. 2510. 3733160000    2510.
##  2 ^GSPC  2019-01-03 2492. 2493. 2444. 2448. 3822860000    2448.
##  3 ^GSPC  2019-01-04 2474. 2538. 2474. 2532. 4213410000    2532.
##  4 ^GSPC  2019-01-07 2536. 2566. 2525. 2550. 4104710000    2550.
##  5 ^GSPC  2019-01-08 2568. 2580. 2548. 2574. 4083030000    2574.
##  6 ^GSPC  2019-01-09 2580  2595. 2569. 2585. 4052480000    2585.
##  7 ^GSPC  2019-01-10 2574. 2598. 2562. 2597. 3704500000    2597.
##  8 ^GSPC  2019-01-11 2588. 2596. 2577. 2596. 3434490000    2596.
##  9 ^GSPC  2019-01-14 2580. 2589. 2570. 2583. 3664450000    2583.
## 10 ^GSPC  2019-01-15 2585. 2613. 2585. 2610. 3572330000    2610.
## # ... with 1,325 more rows

Q4 stock index Get all stocks in the Dow Jones Industrial Avarage (DOW) Index using tq_index().

DOW <- tq_index("DOW")
DOW
## # A tibble: 30 x 8
##    symbol company    identifier sedol  weight sector  shares_held local_currency
##    <chr>  <chr>      <chr>      <chr>   <dbl> <chr>         <dbl> <chr>         
##  1 UNH    UnitedHea~ 91324P10   29177~ 0.0745 Health~     5431277 USD           
##  2 HD     Home Depo~ 43707610   24342~ 0.0655 Consum~     5431277 USD           
##  3 AMGN   Amgen Inc. 03116210   20236~ 0.0599 Health~     5431277 USD           
##  4 CRM    salesforc~ 79466L30   23105~ 0.0593 Inform~     5431277 USD           
##  5 MCD    McDonald'~ 58013510   25507~ 0.0531 Consum~     5431277 USD           
##  6 MSFT   Microsoft~ 59491810   25881~ 0.0488 Inform~     5431277 USD           
##  7 GS     Goldman S~ 38141G10   24079~ 0.0476 Financ~     5431277 USD           
##  8 V      Visa Inc.~ 92826C83   B2PZN~ 0.0475 Inform~     5431277 USD           
##  9 HON    Honeywell~ 43851610   20204~ 0.0395 Indust~     5431277 USD           
## 10 MMM    3M Company 88579Y10   25957~ 0.0384 Indust~     5431277 USD           
## # ... with 20 more rows

Q5 mutate Convert weight in decimals to percentages.

DOW <- 
  DOW %>%
  mutate(weight = weight * 100)
DOW
## # A tibble: 30 x 8
##    symbol company    identifier sedol  weight sector  shares_held local_currency
##    <chr>  <chr>      <chr>      <chr>   <dbl> <chr>         <dbl> <chr>         
##  1 UNH    UnitedHea~ 91324P10   29177~   7.45 Health~     5431277 USD           
##  2 HD     Home Depo~ 43707610   24342~   6.55 Consum~     5431277 USD           
##  3 AMGN   Amgen Inc. 03116210   20236~   5.99 Health~     5431277 USD           
##  4 CRM    salesforc~ 79466L30   23105~   5.93 Inform~     5431277 USD           
##  5 MCD    McDonald'~ 58013510   25507~   5.31 Consum~     5431277 USD           
##  6 MSFT   Microsoft~ 59491810   25881~   4.88 Inform~     5431277 USD           
##  7 GS     Goldman S~ 38141G10   24079~   4.76 Financ~     5431277 USD           
##  8 V      Visa Inc.~ 92826C83   B2PZN~   4.75 Inform~     5431277 USD           
##  9 HON    Honeywell~ 43851610   20204~   3.95 Indust~     5431277 USD           
## 10 MMM    3M Company 88579Y10   25957~   3.84 Indust~     5431277 USD           
## # ... with 20 more rows

Q6 summarize You would think all values in weight should sum to 100%. Calculate the sum of weight to confirm.

DOW %>%
  summarize(sum = sum(weight))
## # A tibble: 1 x 1
##     sum
##   <dbl>
## 1   100

Q7 group_by and summarize Calculate the mean weight by sector. Which sector has the greatest weight on DOW on average?

DOW %>%
  group_by(sector) %>%
  summarize(mean = mean(weight))
## # A tibble: 9 x 2
##   sector                  mean
##   <chr>                  <dbl>
## 1 Communication Services  2.14
## 2 Consumer Discretionary  4.96
## 3 Consumer Staples        2.16
## 4 Energy                  1.71
## 5 Financials              3.03
## 6 Health Care             4.70
## 7 Industrials             3.79
## 8 Information Technology  3.32
## 9 Materials               1.13

Q8 Hide the messages and warnings, but display the code and its results on the webpage.

Completed

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.